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Abstract-In this paper we present an automatic, Kry-
lov-subspace-based order reduction of a thermo-electric
model, describing a novel type of micropropulsion device.
Model order reduction is essential for achieving easily to
evaluate, yet accurate macromodel of the device, and is
needed for simulating both the microthruster array and
its driving circuitry. We present numerical simulation
results of the full finite element model and the reduced
order model that describes the transient thermo-electric
behavior. A comparison between Krylov-subspace-based
order reduction and order reduction using control theo-
retical approaches, such as Balanced Truncation Approx-
imation (BTA), has been performed. For the first time a
Single-Input-Single-Output (SISQ) setup for the reduc-
tion algorithm was sufficient to approximate the complete
time-dependent temperature distribution of the device.

I. INTRODUCTION

A new class of high energy MEMS actuator integrates solid
fuel with three silicon micromachined wafers [1]. It delivers
either an impulse-bit thrust or pressure waves within a sub
millimeter volume of silicon, by producing a high amount of
energy from an ignitable substance contained within the
microsystem. The microthruster fuel is ignited by passing an
electric current through a polysilicon resistor embedded in a
dielectric membrane, as shown in Fig. 1. After the ignition
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Fig. 1 Microthruster Structure.

phase, sustained combustion takes place and forms a high-
pressure, high-temperature gas mixture. Under the pressure
of the gas the membrane ruptures, and an impulse is imparted

to the carrier frame as the gas escapes from the tank.

The present work considers the initial heating phase of the
fuel, right up to the onset of ignition, described through the
following equations:

2

aT _ _i
=0,0=" M

Pot
where « is the thermal conductivity, o is the specific heat
capacity, p is the mass density, T is the temperature distribu-
tion, ( is the heat generation, j is the electric current density
vector and ¢ is the specific electric conductivity.

We use a two dimensional axi-symmetric model, which after
the finite element (FE) based spatial discretization of the gov-
erning equations (1) results in a linear system of about 1000
ordinary differential equations (ODESs) of the form:
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where [K],[C] € R™" are the global heat conductivity and
heat capacity matrix, T(¢),F,E R" are the temperature
(state), the load and the output vector respectively and » is
the dimension of the system. The electric current I(?)
through the heater with electric resistivity R is the input to
the system.

A numerical simulation result of the full finite element model
is shown in Fig. 2.
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Fig. 2 Temperature distribution within the igniting wafer after
0.3s of heating with 80 mW power; Tn,f = 273K .

As the above number of equations n is too large for an effi-
cient system simulation, e.g., using behavioral simulators
such as SABER or ELDO or a circuit simulator such as
SPICE, a reduced order model:
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with the dimension r « n was generated.

The equations (2) ané (3) as written above, represent a Sin-
gle-Input-Single-Output system. The present work considers
a special case when E is an identity matrix, thatis, y = T,
which we call a Single-Input-Complete Output {SICO) sys-
tem.

II. MODEL ORDER REDUCTION

Conventionally, the reduction of thermo-electric models for
MEMS devices is performed through a lumped-element
decomposition of the model followed by parameter optimiza-
tion [2]. Such a non-aztomatic approach requires the designer
to choose the right reduced model structure without strict
guidelines, and to perform a time-consuming parametrization
including indispensable simulation of the full-scale model.
We propose a different, automatic order reduction approach,
suitable for the linear thermo-electric model of the micro-
thruster device, and based on an Arnoldi algorithm [3].

Small Linear Systems

Control theory already has a number of well established tools
for the automatic model reduction of stable linear sysiems
[5]. Each linear dynamic system (2) of order r has n so-
called Hanke} singular values &; which can be computed by
solving the Lyapunov equations:

AP+PAT = —bb
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A'Q+QA = -EE

with A= —[K]_I[C], and b= —[K]_IF for the controlla-

bility grammian P and the observability grammian Q. Hereby

P is to be seen as the connection between the input function

and the state vector (in our case temperature), and Q as the

connection between the state vector and the system output.

They indicate which states can be controlled and which ones

can be observed. The Hankel singuiar values of the original

dynamic system (2) are equal to the square root of the eigen-
values of the product of P and Q.
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Once these values are known, there are a number of model
reduction methods with guaranteed etror bounds for the dif-
ference between the transfer function of an original r -
dimensional system and its reduced r-dimensional system,
as follows:

lo-6l.<2(0,,,+...4+0) (6)

provided that the Hankel singular values have been sorted in
descending order. The basic idea behind the order reduction

using a balanced truncation approximation (BTA) after B. C.
Moore {5] is to ransform the state vector in such a way that
P = @, so that all the states which are simultaneously
weekly controllable and weekly observable can be excluded.
Practically, this means to exclude those equations from the
system (2) which correspond to the last (and smallest) n —r
Hankel singular values. The fact that the computation of
those singular values doesn’t depend on the input function(s),
makes model reduction based on this method fully automatic.
However, the time required to solve the Lyapunov equations,
as well as to perform a singular value decomposition grows
as the cubic power of the number of equations O{n™).
Hence, for computational reasons, these order reduction
methods are limited to relatively small systems, typically
with state vector dimensions in the range of 1000 to 2000.

Large Linear Systems

By performing model reduction on equation (2), the goal is to
effectively describe the behavior of the vector T in time,
through some low-dimensional subspace as:

=V -T,+&T,eR,r« Q)

Equation (7) states that, with the exception of a small error
described by vector £ € R”, the possible movement of the # -
dimensional vector T belongs, for all times, to a r-dimen-
sional subspace, and is determined by an »n X r transforma-
tion matrix V. The matrix V is composed from r n-
dimensional vectors that form a basis for the reduced sub-
space, and the r -dimensional vector T, represents a new low
order set of coordinates for the given basis. When the sub-
space is found equation (2) is projected onto it, and this pro-
jection process produces a reduced order system (3).

It has been shown that, in the case of large-scale systems,
very good candidates for the required low-order subspace of
the equation (7) are Krylov subspaces [6].

The basic idea behind the Krylov-subspace-based Amoldi
algorithm is to write down the transfer function of (2) in the
frequency domain using a Tayler series in the Laplace vari-
able 55 = 0:

o0

[(G(s)} = -3 {m};s (8)
i=0

T, b+ 1. . .
where {m}; = E'(-C K) C F is called the ith
moment, and then to find a much lower order system (3)
whose transfer function {G,{s)} has the same moments as
{G(s)} up to the degree r.

The moments are not computed explicitly. Instead, a Krylov
subspace of the dimension r:

K {A,b}= span{b, A’b, ..., A" 'b} o

with A= —[K]'[C], and b= —[K]"'F

is used, and through the computation of an orthogonal basis
for this subspace, the matrices [C] , and [K], and the load
vector F_ of the reduced system are computed without tak-
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ing into account the output matrix E. All the inputs and out-
puts of the Amoldi algorithm are shown in Fig. 3.
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Fig. 3 Model reduction by the Arnoldi process.

The property of the Krylov subspace (9) is such that the first
r moments of {G_(s)} and {Cj(s)} match, as required.

1. RESULTS

The decay of the Hankel singular values for the microthruster
model is shown in Fig. 4.
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Fig. 4 Decay of the Hankel singuiar values for the micro-
thruster model.

For the specified error bound (equation (6)) of 0.1 a BTA
algorithm has estimated the reduced system to be of the order
7. An equation system (2) containing 1071 ODEs was
reduced to 7 ODEs using each of the two presented algo-
nthms (Fig. 5). A maximal relative error by Amoldi-based
reduction doesn’t exceed 4% during the initial phase,
whereas this error by an optimal BTA-based reduction
amounts 0.3% within the steady-state phase (Fig. 6). The cor-
responding transfer functions of the full-scale and both opti-
mal and non-optimal reduced systems are shown in Fig. 7.

For the thermo-electric model, the simple SISO setup for the
Armoldi algorithm was sufficient to approximate not only a
single output response but also the transient thermal respense
in all the finite element nodes of the microthruster. Fig. 8
shows the mean relative difference for all the nodes between
the full-scale and the reduced different order models. Already
for the reduced system of order 20 a maximai mean relative
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Fig. 5 Solution of the full system and of the 7th order reduced
system for a single node (node 1 in Fig. 1).
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Fig. 6 Relative error corresponding te plots in Fig. 5 during
the initial 0.15s.
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Fig. 7 SISO transfer function of the full-scale and of the re-
duced 7th order system corresponding to the node 1 in Fig. 1.

error amounts only 0.14%. Hence it was possible, after the
simulation of the reduced model, to recover the solution for
all the 1071 nodes by using the equation (7). In this case, the
Arnoldi reduction algorithm can be viewed as a projection
{equation (7)) from the full space to the reduced Krylov space
(9), with an identity output matrix (SICG).

Currently, a software package is under development which
generates reduced-order linear models directly from ANSYS
data files containing more ther 30 000 degrees of freedom. It
forms a netlist suitable for the behavioral simulator SABER
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Fig. 8 Mean square relative difference (MSRD) for all the
nodes during the initial 0.05s, for an Amoldi-based reduction
from order 1071 to 20, 15 10 and 5.

(Fig. 9) from the three-dimensional geometry and partial dif-
ferential equations of the model.
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Fig. 9 Software block diagram.,

The structure of the SABER input file is shown in Fig. 10.
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Fig. 10 Structure of the SABER model.

The template microthruster.sin is implemented in the form of
ODEs (equation (3)). The SABER plot shows the tempera-
ture development in node 1 (Fig. 1) for the case when the pre-
heating was performed, in order to improve the subsequent
sustained combustion. Through back coupling of the mean-
der Eesistor an approximation is made that the heat power
I(t)"R is uniformly distributed over the meander. This has
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the advantage that the monitoring of the temperature through
a change of resistance is possible, and certain changes in
design (such as the change of the meander resistivity) are still
possible after the model reduction phase.

IV. DISCUSSION

Both algorithms presented offer the possibility for the auto-
matic order reduction of ODE systems. The BTA method
additionally offers reduced system order estimation for a
given error. However, due to the computational cost of
O(n3) for the BTA-method it is impractical for large-scale
systems. The computational2 cost for Arnoldi-based reduc-
tion, which is less than @(n”), makes it suitable for MEMS
models with more than 10 000 degrees of freedom. For the
first time a Single-Input-Single-Output setup for the Arnoldi
reduction algorithm was used to approximate a linear Single-
Input-Complete-Output  thermo-electric  system. Model
reduction is automatic and based on the original system
matrices only. In this way, a time-consuming simulation of
the full-scale model is circurnvented with no loss of spatial
distribution information. Furthermore, the model reduction is
not limited to this particular device, but can be applied to a
wide spectrum of important thermo-electric MEMS devices,
as well as for applications in bonding, IC temperature con-
trol, packaging and so on.

V. ACKNOWLEDGMENTS

This work is partially funded by the EU through the project
MICROPYROS (IST-1999-29047), partially by the DFG
project MST-Compact (KO-1883/6) and partially by an oper-
ating grant of the University of Freiburg.

VI REFERENCES

[1] C. Rossi, “Micropropulsion for Space”, Sensors Update, 10,
p. 257-292 (2002)

[2] P.Schwarz, P.Schneider, “Model Library and Toot Support for
MEMS Simulation”, SPIE Proc. 4407, p. 1-14 (2001)

[31 L.M. Silveira, M. Kamon, 1. Elfadel, J. White,“A Coordinate-
transformed Arnoldi Algorithm for Generating Guaranteed
Stable Reduced-Order Models of RLC Circuits”, Comp.
Methods. Appl. Mech. Eng., 169, p. 377-389 (1999)

[4] Antoulas, “Approximation of linear dynamical systems”,
Wiley Encyclopedia of Electrical and Electronics Engineer-
ing, (Ed.: J.G. Webster), 11, p. 403-422 (1999)

[5] B. C. Moore, “Principal Component Analysis in Linear Sys-
tems: Controlability, Observability, and Model Reduction”,
IEEE Trans. on Autom. Control AC-26, p. 17-32 (1981)

6] T.Mukherjee, G. Fedder, D. Ramaswany, J. White, “Emerging
Simulation Approaches for Micromachined Devices”, IEEE
Trans. Comp.-Aided Des. Integr. Circ. Syst., 19, p. 1572-1589
(2000)



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


