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Absiraci— Recently a new approach was presented to
determine the high-frequency response of on-chip passives
and interconnects. The method solves the electric scalar
and magnetic vector potentials in a prescribed gauge. The
latter one is included by introducing an additional in-
dependent scalar fleld, whose field equation needs to be
solved. This additional field is a mathematical aid that
allows for the construction of a gange-conditioned, regu-
lar matrix representation of the curl-curl operator acting
on edge elements. This paper reports on the convergence
properties of the new method and shows the first results
of this new calculation scheme for VLSI-based structures
at high frequencies. The high-frequent behavior of the
substrate current, the skin effect and current crowding is
evaluated.

I. INTRODUCTION

One of the important simulation challenges in VLSI
design is the adequate characterization of high-frequency
interconnects and on-chip passives. Important effects are
substrate currents, current crowding at the edges of the
interconnects due to skin effect and the proximity effect.
The characteristic electrical length at the frequencies un-
der consideration (GHz range) is rather large {cm scale).
However, the mesh scale required for an accurate field cal-
culation is determined by the very fine geometrical details
{sub-micron scale) of the metal lines.

"Although the physics of these problems is understood for
a long time, detailed and fast calculation schemes are still
lacking. 'We recently introduced an approach to simulate
high-frequency effects of on-chip interconnects, dedicated
to the specific geometry of the problem. The detailed
description of the method is presented elsewhere [1-5].
The frequency domain is addressed. The meshing is
~ Cartesian, suitable to show the validity of the model and
to simulate en-chip intercennects, because in a first ap-
proximation, interconnects can be regarded as parallel to
the axes of a Cartesian frame. However, this is not an
essential restriction and the techmnique can be extended
to unstructured meshes.

Thia paper is organized as follows: In the second section
we discuss the need for a gauge condition. In the next
section the essential properties of the solution method
are given, emphasizing the novel aspects of the approach.
In the next section the skin effect is calculated for bench-
marking purposes. and the substrate current is discussed.
In the final section, we reach our conclusions.

II. THE NEED FOR A GAUGE CONDITION

To describe the electrodynamical environment, differ-
ent approaches can be pursued. The electric and mag-
netic field variables can be used as independent variables.

Since these variables are gauge invariant, no gauge condi-
tion is required. This is the case in most finite-difference
schemes. However, to comply with the needs of IC design-
ers who work in the (quasi-) static regime, a formulation
that uses the potentials V and A as independent vari-
ables simular to the FIT approach [6], [7], [8] is preferred.
The electric potential V is associated to the nodes, while
the magnetic potential (A) is put on the links between
the nodes of the mesh. The electrodynamic description
results into a Poisson equation for the electric scalar po-
tential and a curl-curl equation for magnetic vector po-
tential respectively. These potentials are not uniquely
defined which results in a singular matrix representation.
In order to arrive at a unique solution for the potentials
we need to introduce a gauge condition. The inclusion of
a gauge condition, such as the Lorentz gauge or Coulomb
gauge, is occasionally referred to as 'gauging’. The curl-
curl equation can be regularized by eliminating the un-
known vector potentials assigned to the edges of a span-
ning tree. However, this kind of gauging leads to a slow
convergence of the Krylov-subspace iterative solvers [9].
But do we really need to carry out the extra work of fix-
ing the gauge? Let us start with a matrix representation
of a singular linear system: M x = b and det(M) = 0. It
has been shown that if b has no component in the range
of M, then the standard conjugate gradient like meth-
ods are successful [9], [11], [10]. However, if b contains
a component outside the range of M, then the problem
is ill-posed and no convergence is reached. The iterative
solution methods without gauging is effective if the right-
hand side of the curl-curl equation can be constructed in
such a way that its divergence vanishes, i.e, if there is
no component outside the range of the curl-curl operator.
This can be understood by realizing that the Krylov space
that is spanned by {x, Mx, M?x, M3x,...} and that the
search for the solution fully takes place in the range of
M. However such a construction is not always possible.
Whereas in magnetostatic calculations with metallic con-
ductors one can easily realize that at the start of solving
the equation V x ¥V x A = pod, the condition V-J =0 is-
satisfied, this is much less easy if a non-linear dependence
of the current J on the vector potential exists. This is the
case for non-linear media such as semiconductors as well
as for time-dependent fields. Furthermore, numerical er-
rors are inevitable and especially for very large systems
or systems that need many iterations, a small component
of b outside the range of M may be amplified and lead-
ing to lack of convergence. Therefore, a gauging may be
preferred. Also for particular problems in time domain
{12] or multigrid we must look for an adequate gauge con-
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gtruction. Thiz might be the tree-cotree gauging [13], the
grad-div gauging [7], or the ghost-field gauging [1].

III. GuosT-FIELD SOLVER

The method of [1-5] introduces an additional scalar
field that needs to be obtained as part of the solution
method. The solution for this additional field does not
carry energy. Therefore, we have named it a 'ghost field’,
being a mathematical aid that allows for the construction
of a gauge-fixed, regular matrix representation of the curl-
curl operator acting on edge elements. With the use of
the ghost-field gauging technique, the Maxwell problem
also results into a Poisson problem for the scalar potential

—V-(eVV) =p, 0]

and a curl-cur] equation for the magnetic vector potential
that is solved tegether with a gauge equation for the ghost
field x:

VxVxA—'ny=,qu_m5% (Vv.,.aA B_VX.)

o
V-A+Vix=0. @

An extra parameter v (with dimension m~2) is intro-

duced in order to account for the dimensions of the sys-

tem. So instead of the curl-curl operator combined with
the gauge condition

(75).

that lead to matrices M that are sparse, well-posed, yet
not square, the operator '
)

VxVx -4V
V- V2
ig considered. This operator leads to matrices M that are
also sparse, regular and square. Moreover, the resulting
matrices are semi-definite and therefore well suited for
iterative solvers.
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IV. SiMULATION RESULTS
A. Skin effect

The quantitative description of skin effect in a cylindri-
cal wire can be found in many text books. Although
the discovery of the effect took place more than 125 year
ago, nowadays still papers appear on resistance and in-
ductance calculations [15], [17). The internal impedance
of a cylindrical wire with radius e and skin depth 6 is
given by [16],

1+5 Li(l +j)a/45]
2wade I [(1 + j)afd]
with the use of the Bessel functions I,,. This is an excel-

lent benchmark problem for high-frequency solvers. We
start with a brick representation for the circular form as

(5)

Z, int =
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1. Cartesian approximation of a circle.

Fig. 2. Current density in a circular cross section at 100GHz.

shown in Fig. 1. The current density at 100 GHz is also
shown, and for an aluminum cylinder, the skin depth be-
comes 0.28 um as can be verified in Fig. 2.

The impedances calculated with this solver compared
with the analytical solution, can be seen in Fig. 3. For
the line resistance (upper curves), the relative error is
less than (.08, while for the reactance {lower curves), the
results are much better, and the two curves match closely.

B. Ring Structure

The method is also capable of dealing with substrate
or eddy currents. The complexity of the problem is illus-
trated in Fig. 5. A ring-shaped conductor that is sepa-
rated a finite distance from a conducting substance (the
’substrate’) carries an oscillating current. As a conse-
quence, the magpetic flux enclosed by the ring varies in
time. From the time-dependent Maxwell equations one
can conclude that along closed paths, e.g. paths in the
substrate, an electromotive force is induced. This elec-
tromotive force gives rise to currents in the substrate.
‘We show the results of an aluminum ring embedded in sil-
icon oxide, on top of a moderately conducting substrate
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Fig. 3. The internal impedance of a cylindrical wire.
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Fig. 4. The current density in the wire {analytic and numerical).

at 500 MHz as illustrated in Fig. 6. The ring dimensions
are 90 x 50 pm, the substrate is modeled as a low con-
ductive metal {(=0.01 (pm) and we used a 20 x 20 x 20
mesh. An AC (electric) voltage is put on one of the out-
put ports with an amplitude of 0.01 V, forcing a current
in the ring.

« The skin effect of the currents in the lines that connect
the output ports and the ring is shown in Fig. 7-(a). The
currents is crowding at the inner edges of the conductor.
» Fig. 7-(b) shows the current density in the substrate,
and the circular Eddy currents in the substrate. In a vec-
tor plot of the current density we observe that the current
is flowing in the opposite direction of the current in the
aluminum ring. A region of higher substrate current oc-
curs under the input ports due to a higher magnetic field
and hence a higher induced current.

« Fig. 7-(c) shows a cross-section of the current density
of the ports and confirms the occurrence of the proximity
effect. Because the currents are flowing in the opposite
direction for the two ports, these currents will attract
each other and the highest current density can be found
in the inner corners. Fig. 7 also shows that the current
density is the highest in the inner part of the ring, due to
the proximity effect..
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Fig. 5. Schematic view on the origin of substrate currents.

Fig. 6. Aluminum ring above a low conductive substrate

V. CONCLUSIONS

We showed that the new approach of exploiting a ghost-
field for the implementation of a gauge condition, dis-
cretizes the curl-curl operator and provides square and
regular as well as sparse matrices. This computational
scheme can also be used also for time-dependent electro-
magnetic fields. The benchmark results for the skin ef-
fect demonstrate that the method is already accurate for



(b)

Fig. 7. Top view of the current densities in the ring (a), of the
substrate (b) and side view of current densities of the ports (c)
at 500 MHz.

rather coarse meshes. This result can be understood as
a consequence of the correct assignment of physical vari-
ables to the computational grid. Just as the Scharfetter-
Gumme] discretization techniques respects the underly-
ing principle of charge conservation by assigning the cur-
rent variables to the links of the grid, we have assigned
the vector potential also to the link of the grid. In the
present work we have studied the substrate current in-
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duction in moderately conducting material. Future work
consists of applying the present method to semiconduct-
ing substrates. Finally, we emphasize that the method
introduces a parameter 7, that controls the 'degree of
regularity’ of the matrices. Whereas, v = 0 corresponds
to a singular matrix, non-zero values of -y shift the former
zero eigenvalues of the matrix to the positive real axis and
into the complex plane. Further work is required to find
optimal preconditioning schemes for inverting the matri-
ces. The parameter v can be used to improve the speed
and robustness of the solver.

VI. ACKNOWLEDGEMENTS

Henk Van der Vorst (Utrecht University) and
Domenico Lahaye (Catholic University Leuven) are ac-
knowledged for sharing their knowledge on linear solvers.
This work is partly financially supported by the Flem-
ish Institute of Science and Technology (IWT) and the
European Commission.

REFERENCES

[1] P. Meuris, W. Schoenmaker and W. Magnus, Strategy for elec-
tromagnetic interconnect modeling, TEEE Trans. on CAD, 20,
6, 753-762, June 2001

[2)] W. Schoenmaker, P. Meuris, Electromagnetic interconnects
and passives Modeling: Software Implementation Issues, JEEE
Trans. on CAD , 21, 5, 534-543, May 2002,

[3] W. Schoenmaker, W. Magnus, P. Meuris, Ghost fields in Clas-
sical Gauge Theories, Phys. Rev. Letl., 88, 18, May 2002

{4] P. Meuris, W. Schoenmaker, W. Magnus, Inductance Calcula-
tions based on Lattice-Gauge Electromagnetic Modeling, sub-
mitted to IEEE Trans, on advanced packaging, 2002

[5] W Schoenmaker, Wim Magnous, Peter Meuris and Bert
Maleszka, Renormalization Group Meshes and the Discretiza-
tion of TCAD, submitted to IEEE Trans. TCAD, 2002

[6] T. Weiland, Time demain electromagnetic field computation
with finite difference method, Ini. J. Num. Mode.: ENDF, 9,
259-319, 1996 .

[l M. Clemens and T. Weiland, Regularization of Eddy-Current
Formulations Using Discrete Grad-Div Operators, IEEE Trans.
on Magnetics, 38, 2, March 2002

8] M. C1 and T. Weiland, Magnetic Field Simulations Us-
ing Conforma! FIT Formulations, IEEE Trans. Magn., 38, 2,
March 2002

[9] H. Igarashi, On the Property of the curl-curl matrix in finite
element analysis with edge elements, IEEE Tyans. Magn,, 87,
5, September 2002

{10] H. Igarashi and T. Hopma, On Convergence of ICCG Ap-
plied to Finite-Element Equation for Quasi-Static Fields, IEEE
Trens. Magn., 38, 2, March 2002

[11) A. Kameari and K. Koganezawa, Convergence of ICCG
Method in FEM Using Edge Elements without Gauge Condi-
tion, IEEE Trans. Magn., 33, 2, March 1997

[12] Alain Bossavit, *Stiff’ Problems in Eddy-Currens Theory and
the Regularization of Maxwell’s equations, IEEE Trans. on
Magn., 37, b, September 2002

(18} J.B. Manges, Z.J. Cendes, A generalized tree-cotree gauge for
magnetic field computation, JEEE Trons. Magn., 31, 1342-
1345, 1995

[14] H.B.G. Casimir and J. Ubbink, The Skin Effect, Philips Fech-
nical Review, 28, 9, 271283, 1967

[15] M. J. Tsuk and J. A. Kong, A hybrid method for the calcula-
tion of the resistance and inductance of transmission lines with
arbitrary cross sections, IEEE Trans. Microwave Theory Tech.,
39, pp. 1338-1347, 1991.

{16] M. J. Tsuk, The internal impedance of conductors with arbi-
trary crogs-sections, 2000

[17] F. Medina, R. Marques, Comments on "Internal Impedance
of Conductors of Rectan; Cross Section”, IEEE Trans. Mi-
crowave Theory Tech., 49, 1511-1512, 2001




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


