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Abstract A method for solving the Boltzmann-Poisson system in the frequency domain has been developed. 
It is achieved by applying small signal analysis to the Spherical Harmonic expansion method of solving the 
Boltzmann Equation. By solving this model in the frequency domain, we can investigate the frequency 
response of entire momentum distribution function. A 0.05 p m  base BJT simulation in frequency domain 
gives the results of the small signal distribution function response over the entire device in 4 minutes CPU 
time on an Alpha workstation. 

I. Introduction 
As IC operating speeds increase into the gigahertz range, understanding the frequency response of de- 

vices becomes increasingly important. To meet this challenge, we have developed a method for solving the 
Boltzmann transport equation and Poisson equation self-consistently in the frequency domain. Previous 
investigators have solved the Drift-Diffusion (DD) model in the frequency domain which gave the frequency 
dependence of the carrier concentrations and electrostatic potential within the limits of the DD model[l,2]. 
By solving the Boltzmann-Poisson model in the frequency domain, we not only account for the effects of 
velocity overshoot on ensemble averages, but determine the frequency response of the entire momentum 
distribution function. By ascertaining how each part of the distribution function responds to frequency of 
operation, insight can be gained into the frequency-dependent transport of electrons in phase-space. With 
this added information, we open the door to using this knowledge for improved high-speed device design. 

2. Small Signal Model 
To investigate the frequency response of the distribution function for small sinusoidal voltage inputs, 

we use a mathematical/physical device model which consists of the Poisson Equation, the time-dependent 
Boltzmann Transport Equation (BTE) for electrons, and the time-dependent Current Continuity Equation 
for holes. 

F4 = V34(F, t )  - E ,  [ / f (i, F, t ) d i  - p(F, t )  + 0(3] (1) 

f (C, i, t )  is the electron distribution function; +(f, t )  is the potential; p(?, t )  is the hole concentration; D ( 3  is 
the net doping concentration; R(n,p) is the net hole recombination rate; V, = KBT/q is the thermal voltage; 
E ,  is the dielectric constant of silicon. 

In this work we focus on small signal operation where we determine a DC operating point, and then 
perturb it by adding a small AC component. 

where suffix "0" denotes self-consistent DC steady-state solution; " w'' denotes the complex AC small signal 
component; w is the frequency. We then can linearize the Eqns. (1,2,3) about the DC operating point with 
the Taylor first order expansion: 
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The objective at  this point is to  obtain the small signal coefficients $(f, U ) ,  f ( f ,  z, U )  and $(F, U )  

3. Solution 
We obtain the small signal coefficients numerically. For equations (1) and (3) we follow fairly typidl  

methodologies where we discretize first, and then determine the small signal coefficients from the discretized 
equations[l]. The BTE, however, is considerably more complicated, and it will thus be our primary focus. 
Before discretizing the BTE, we transform it into a tractable form by extending the SH formulation[3], to  
the frequency domain. To achieve this we write the DC and AC parts of the distribution function in terms 

Then we substitute this expression into Eq(2). Taking advantage of recurrence and orthogonality between 
Spherical Harmonic basis functions, a system of equations for the expansion coefficients can be obtained. 
After truncating the high order terms, we build upon the DC formulation[3], and discretize the BTE by a 
Scharfetter-Gummel method to  obtain the following: 

After discretizing equations (1) (2) and (3), we can begin to determine the small signal coefficients. To 
achieve this, we perform a first order Taylor expansion about the DC solution of the discretized equations 
(eqn. (9) for the BTE). To the Taylor series, we must also add the first order terms originating from the 
af /at and dp ld t .  This gives rise to the Jacobian-type matrix with additional j w  terms along the diagonal, 
as shown in Fig(1a). The R vector consists of zeros, except where the boundary conditions are implemented. 

A ,  B E  :Fa 

Hole Continuity Eq :Po + 
Matrix Solver 

Ax=B 

Figure 1: (a) The formation of Jocabian matrix. N and M are number of space and energy mesh respectively. 
(b) Simulation Flow Chart. 
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With the small signal equations formulated, we solve the frequency domain model according to the flow 
chart in Fig(1b). For one particular DC bias, we first calculate a self-consistent solution (40, f0,po). Using 
the resulting DC solution, the elements of the Jacobia? y e  evaluated. The linear system can be solved by 
SuperLU complex number matrix solver[4] to obtain (4 ,  f ,  3) at  each particular frequency. 

4. Simulation Results 
We used the above model to simulate a 0.05 p m  base BJT. First, VBE=O.%V and vBCE1v DC values 

are applied on two side terminals, and we obtain a self-consistent DC solution. In Fig(2) we show the doping 
profile, resulting electric field respectively. The DC normalized energy distribution function is shown in 
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Figure 2: (a) Simulated BJT Doping Profile. (b) Calculated DC Electric Field. 

Fig(3a). Next, we applied a small perturbation voltage Vbe = O.lV, to the BJT emitter. The range of input 

frequencies is from 1K Hz to 10G Hz. Fig(3b) shows the normalized magnitude I f 1  = ( J R e ( f ) 2  + l m ( f ) 2 )  
of the AC energy distribution function over the whole device at  w = 10GHz. Fig(3b) indicates that the AC 
component of energy distribution function departs from the DC distribution function especially for values 
of high energy. Fig(4a) shows the ratio of the AC to DC distribution functions at  different locations. The 
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Figure 3: (a) DC electron energy distribution function. (b) Magnitude of AC electron energy distribution 
function throughout device at  10GHz. 

figure indicates that relatively speaking, the high-energy tail of the distribution function is more effected 
by the AC signals, and the effect decreases as the DC distribution function becomes more heated. Fig(4b) 
shows that the low energy electrons are in phase with the applied voltage, but the higher ones are out of 
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Figure 4: (a)Ratio of AC to DC distribution functions at locations x=0.05pm1 O.lpm, 0.15pm, 0.2pm. (b) 
AC distribution function phase versus energy at  x=0.06pm and 10GHz 

phase. This indicates that the low and high energy electrons diffuse at  different rates. This agrees with 
theoretical results obtained for time domain calculations which indicate that high energy electrons transport 
first in BJT's leading to energy overshoots[5]. 

The current in the device can be divided into a displacement current as well as an AC and a DC particle 
current, with the magnitude constant: 

l ~ d ~ ~  + J$ + ~i:~l = I ( ~ w ) E ,  . i3eJwt + JO + JeJwt I = constant (10) 

The current is determined directly by multiplying the calculated distribution function by velocity and inte- 
grating over momentum space. Fig(5) shows the current for the real and imaginary parts of lJdzs + J;,&l at  
the frequency 10G Hz. The figure shows that the magnitudes of the particle and displacement currents sum 
to a constant to preserve continuity. 
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