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Abstract 
We present a high speed adaptive tetrahedral mesh refinement method based on the Recursive Multi-Tree algorithm. To our 
knowledge, this is the first refinement algorithm that is able to improve the quality of the original mesh. In this paper, the method 
has been applied to discretize the Brillouin zone of silicon for full band Monte Carlo device simulation. Densities of states for 
seven electron and hole bands of silicon are computed based on the new refined tetrahedral meshes. 

Introduction 
In 3D process and device simulation, creating a high quality mesh is critical for numerical stability and efficiency. Among all 
mesh generation methods, adaptive refinement is the most efficient way to improve simulation accuracy. Such an approach 
becomes important for discretization of the Brillouin zone of silicon for full band Monte Carlo simulation. In general, adaptive 
refinement of a tetrahedral mesh is difficult to accomplish without significantly degrading the mesh quality. Recently Leitner and 
Selberherr proposed a refinement method based on mixed-element decomposition [ 13. This method limits the degradation of 
tetrahedral quality to a constant factor; however, it produces incompatible nodes which need special treatment during 
discretization. 
Here we propose a new method called "Recursive Multi-Tree'' (or "Recursive M-Tree") for adaptive refinement of a tetrahedral 
mesh. It can be shown that in the worst case, this method degrades the tetrahedral quality by a factor of 0.5; however, this 
corresponds to the refinement of an equilateral tetrahedron. For initial meshes of poor quality, this method actually improves the 
quality during the refinement process. This is important, as most initial tetrahedral meshes are usually far from perfect. 
Recently, Bude and Smith have shown [2] that full band Monte Carlo device simulation can be accelerated up to 100 times using 
a tetrahedral instead of rectangular mesh for the discretization of the irreducible wedge of the Brillouin zone. We have used the 
Recursive M-Tree method for this application, and generated meshes for seven silicon bands. Densities of states have also been 
computed from tetrahedral meshes for the seven silicon bands. 

Recursive M-nee Algorithm 
The Recursive M-Tree method starts on an initial coarse tetrahedral mesh. The algorithm first searches for the longest edge in the 
tetrahedron that needs refinement. Then, all tetrahedra that share that edge are searched for edges which are longer than the first 
edge. If the search come up empty, a node is inserted on the first edge. Otherwise, the refinement routine is recursively~applied to 

the newly found (longer) edges, for which a search for even longer neighboring edges is then performed. This algorithm has two 
properties: 1) An edge is split only when it is the longest edge of all tetrahedra that share that edge. 2) An edge is split only 
because it does not satisfy the refinement criterion or there is another (shorter) edge in its neighborhood that needs to be refined. 
Property 1 assures that quality factor of the resultant tetrahedra are greater than 0.5. In most cases, however, this method 
improves the quality by splitting the longest edges. This is especially true for a poor quality initial tetrahedral mesh. Property 2 
minimizes the number of nodes that are added. This decreases the number of nodes needed for the same refinement criterion 
when compared with other methods. For example, the minimurn refinement in [I]  is to divide a tetrahedron into 8 smaller 
tetrahedra. When an edge needs refinement we insert a node at the "center of mass" of all neighboring nodes on that edge. We 
found this improves the quality more than inserting a node at the middle of the edge. To demonstrate the quality improvement 
during refinement we use a long and narrow tetrahedron as an example (Fig. 1 inset). The refinement criteria is that the 

maximum edge length is shorter than 0.7. In this example the quality of the initial tetrahedra, defined as Q = 6 h V / h M A ,  where 
V is volume and h,,, is maximum edge length, is improved from 0.014 to 0.4. Note that a tetrahedron formed from a cube 
comer has a quality of 0.5. Also, this algorithm is computationally efficient. In another example (not shown here), 71.8 seconds 
CPU time were used to generated 1.1 million tetrahedra on an IBMIRISC6000 590 workstation. 

Brillouin Zone Discretization 
While full band Monte Carlo device simulation offers great physical detail about carrier transport in semiconductor devices, it is 
also very CPU intensive. CPU usage can be reduced by using an iso-energy surface aligned tetrahedral mesh 121 in the 
momentum space. This method can also be extended to a regular, non-aligned tetrahedral mesh by indexing the tetrahedra in lists 
sorted by energy. We have applied the recursive M-Tree algorithm to adaptively refine the irreducible wedge in momentum 
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space, producing a tetrahedral mesh that fills the domain, and represents the energy to the accuracy specified by the user. The 
error is defined as the difference between the original energy, computed from the quantum pseudopotential method, and the 
energy defined on the new tetrahedral mesh. The procedure is as follows: First, the irreducible wedge is divided into 3 large 
tetrahedra. Then, the refinement algorithm is applied with the refinement set to control the energy error such that the RMS error 
of the density of states is less than 5%. Meshes for seven silicon bands, comprising electrons and holes, have been generated. 
Compared with [2] this algorithm achieved better accuracy in representing carrier energy in momentum space with 40% less 
elements; at the same time, it is relatively easy to implement. Fig. 2 a and b show the meshes for the first bands of electrons and 
holes. Fig. 3 compares electron and hole density of states with those from a rectangular mesh [3]. Judging from the 
computational steps for the final momentum selection in full band Monte Carlo device simulation, our approach should yield 
similar CPU efficiency compared to that of Bude and Smith. 

Conclusion 
We have presented a novel method for adaptive refinement of tetrahedral meshes in 3D. Compared with existing methods, this 
algorithm is unique in improving the quality of the original mesh during refinement. Combining high efficiency as well as 
flexibility in the handling of various refinement criteria, this method provides a promising mesh generation tool for 3D process 
and device simulation. This method was applied to discretize the irreducible wedge for full band Monte Carlo device simulation. 
The densities of states of seven silicon bands were found to be in good agreement with those calculated from a rectangular mesh. 
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Fig. 2. z=O projection of meshes for 1st conduction (a) and 
valence (b) band. 
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Fig. 1. Quality of tetrahedral mesh during refinement. 
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Fig.3. Comparison of DOS from the new tetrahedral 
meshes (symbols) and from rectangular mesh (lines). 
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