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Abstract

The transfer impedance method in the time-domain formulation is applied to
calculate the impedance field of submicron ntnnt GaAs diodes in the frame-
work of a closed hydrodynamic approach. The method enables us to determine
the voltage noise-spectrum associated with velocity-fluctuations. The good
agreement found with Monte Carlo simulations validates the proposed theoret-
ical approach.

1. Introduction

The impedance-field method is widely used for noise modelling in the framework
of the drift-diffusion approximation [1]. Within a one-dimensional geometry and
considering single-carrier velocity-fluctuation as source of noise, the spectral density
of voltage fluctuations between two terminals, Sy(w), as measured under constant-
current operation, takes the form:

Sy(w) = Ae? /OL n(z)|VZ(z;w)[*S,(z;w)dz (1)

where w is the cyclic frequency, e the electron charge, A the cross-section area of the
device, L the lenght of the device between the probing electrodes taken along the z
direction, n(z) the local carrier concentration, S,(z,w) the local spectral density of
single-carrier velocity fluctuations, VZ(z;w) the local impedance field. This latter
quantity relates a perturbation of the voltage drop U with the perturbation of the
conduction current-density j4 in a point zo through

§U(zo;w) = VI {zo;w)bja(zo;w) (2)

In this work we present a procedure for the numerical calculation of the impedance
field spectrum VZ(zo;w) of a two-terminal semiconductor structure in the frame-
work of a closed hydrodynamic approach [2,3]. The procedure is based on the
modeling of a spatio-temporal response of the electrical characteristics to a local
perturbation of j;. The relevance of the approach is illustrated by calculations of
Sy(w) in submicron n*nnt GaAs diodes.
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2. Procedure

We describe carrier transport in the framework of the conservation equations for
the carrier velocity v(z,t) and mean energy &(z,t) [3]. To simulate total-current
operation, we use the definition of the total current-density, J, taken to be constant
both in time and space:

0FE(z,t)

J = en(z,t)v(z,t) + eco e

= const (3)

where ¢g is the free-carrier permittivity, ¢ the static dielectric constant of the ma-

terial and E(z,t) the instantaneous local electric-field. Then the Poisson equation

writes: O (2, 1)
€€g z,

)y=Ng+ —— 4

n(wv ) a+ e Bz ( )

N, being the donor concentration. After the substitution of Eq. (4) in Eq. (3) we
obtain an equation for the electric field E(z,?) in the form:

OF OF e 1
W-Fva-{-av]vd: a-] (5)

Equations (4) and (5) together with the velocity and energy conservation equations
constitute the closed model which allows both to calculate the steady-state char-
acteristics for a given value of J and to investigate the spatio-temporal evolution
of various perturbations responsible for the electronic noise in the structure. Since
J is taken to be constant, only the fluctuations of the conduction current-density
Ja = env are responsible for the noise. Supposing that the inititial perturbations are
small enough to satisfy linearization, the difference between the time-dependent per-
turbed solution, E(z,xo,t), and the steady-state solution E,(z) of the unperturbed
system gives the Green-function which describes the spatio-temporal evolution of
the electric field perturbation caused by the local perturbation of the conduction
current at the point z = zo. By definition [4], the impedance field is given by

VZ(zojw) = /OL /:0 exp(—iwt)z(z, zo; t)dzdt (6)

3. Results and discussions

Numerical simulations are performed for a n*nnt GaAs diode with the following
parameters: the doping levels are of n = 10'® and n* = 2 x 107 ¢m ™3, the cathode,
n-region and anode lenghts are respectively of 0.2, 0.6 and 0.4 pm. Abrupt ho-
mojunctions are assumed. The initial perturbation is taken of the Gaussian form:
8(z — z0) = exp|(z — z0)?/72)/(y7?), and S,(z;w) is calculated using the hydrody-
namic approach developed in [2]. Typical features of the spatio-temporal evolution
of the electric field perturbation initiated at ¢ = 0 by the local perturbation of the
conduction current in the n-region are illustrated in Figs. 1 and 2. All the results
correspond to an applied voltage Uy = 2.3 V. Figure 1 shows the spatial distri-
bution of §F(z,t) at successive time moments for the initial perturbation placed
in the point z = 0.4 pm. Figure 2 represents a time dependence of the voltage
perturbation at the whole structure for the initial perturbations placed in points
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r =0.3,0.4,0.5,0.6,0.7 um (respectively, curves 1 to 5). At the initial stage of the
perturbation evolution, there appear two shock-waves which move along the struc-
ture toward opposite sides (see Fig. 1, solid curve). Such a behavior is typical for
physical systems with nonlinear convective and diffusion processes. A quick damp-
ing of the shock-waves corresponds to an initial fast decrease of §U(t) (see Fig. 2,
t < 0.5 ps). In the general case, when electron heating in the n-region is small and
the negative differential conductivity (NDC) is absent, the perturbation evolution
ends when the shock-waves vanish entirely. If the plasma frequency is considerably
higher than the damping rate of the shock-waves, the shock-wave propagation is ac-
companied the plasma oscillations. Such a situation is typical for the perturbations
in n* regions. For the case considered here, the local NDC is present in the n-region
and the time evolution of the perturbation is not finished with the disappearance
of shock-waves. The transit through the diode of the right shock-wave creates a
secondary perturbation of the electric field (caused by the dipole perturbation of
carrier concentration) which grows by approaching the anode contact (see Fig. 1).
The dipole-domain propagation leads to the bell-shaped evolution of the voltage
perturbation (see Fig. 2, t > 0.5 ps). Figure 3 illustrates the spatial dependence
of [VZ(z,w)|? at the frequency f = 10 GHz (dashed curve). For comparison, the
solid line represents the square module of the differential impedance field defined as

(4]:
VZ'(z,0) = /0 /0 ezp(—iwt)z(z, 2o, 1)dzodt (1)

This quantity, which is complementary to the field impedance in Eq. (6), is used
to determine the local electric field response to a perturbation of the total current
flowing in the structure [3]. The spatial profile of both are reported in Fig. 3.
The difference between the two shapes is due to transit-time effects associated with
the formation of accumulation layers inside the n-region. Accordingly, the dashed
curve, which represents the global response to a local current perturbation, exhibits
its maximum around the cathode. In contrast, the continuous curve, which rep-
resents the local response to a global current-perturbation, exhibits its maximum
around the anode where the accumulation-layer disappears. The spectral density of
the voltage fluctuations calculated by using Eq. (1) is presented in Fig. 4 (dashed
line). For comparison the solid line shows the result of the Monte Carlo simulation.
The excellent agreement found between the noise spectra obtained in the frame-
work of the hydrodynamic and Monte Carlo approaches fully supports the physical
reliability of the proposed method.
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Fig. 1. Spatial profiles of the electric
field perturbation at successive time
moments for the initial perturbation
placed at point z = 0.4 um.
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Fig. 3. Spatial profiles of the
absolute value squares of the dif-
ferential impedance field |VZ'(z;w)/?
(solid line) and of the impedance field
[VZ(z;w)|* (dashed line) at f =
10 GH=.
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Fig. 2. Voltage perturbation evolu-
tion for initial perturbations placed at
points z = 0.3,0.4,0.5,0.6,0.7 um (re-
spectively, curves 1 to 5).
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Fig. 4. Frequency dependence of the
spectral density of voltage fluctuations
calculated by Monte Carlo and hydro-
dynamic approaches (solid and dashed
lines, respectively)





