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Abstract 

A two dimensional self consistent solution of the Schr6dinger and the Poisson equation is 
obtained. This is coupled with a three dimensional M-dSus ion  model to simulate 
nanometer heterojunction devices with respect to the microscopic properties of the 
electrons. Some examples of calculated 111-V semiconductor structures are represented. 

1. Introduction 

The development of the semiconductor technology has made possible the production of 
structures and devices with small dimensions. For the simulation of these nanometer 
devices it is necessary to consider the wave properties of the carriers. Generally the 
Schrodinger equation is used to describe the microscopic energy quantisation which 
appears at heterojunctions [I]-[4]. The starting point of our work is the three dimensional 
(3D) device simulator SLMBA [5] based on a macroscopic drift-diffusion model, which is 
adapted to the simulation of heterostructures. The aim is the improvement of the 
simulation model by inserting the two dimensional (2D) Schrodinger equation. We make a 
point of an efficient numerical algorithm. The solution of the Schrodinger equation takes 
place by choice 1D or 2D depending on the structure design. 

2. Simulation Model 

The coupled 2D-microscopic/macroscopic model consists essentially of the microscopic 
Schrodinger equation and a macroscopic drift-diffusion model. 
The behaviour of the electrons is described by the wave function I$ as the solution of the 
2D Schrodinger equation [I], [2] 

fi2 
--,wJ(x, Y) + v(x,  Y),+(x, Y) = EQ(X. Y).  

2m 
(1) 

Here m* is the effective mass and E are the discrete energy levels. The potential energy V 
is 

V(X, Y) = -q+(x, Y) + mc + vXc(x,y) + vim(', Y) ,  (2) 
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where 4 is the electrostatic potential, mc is the conduction band discontinuity and Vxc is 
the local exchange correlation potential energy, Vh is the image potential [3], [6], [7]. Vxc 
and Vh has been neglected at first [I]. 
With the wave functions Q and the corresponding energies E we obtain the microscopic 
electron density [2], [3], [6] 

The 3D bulk electron density nbulk contains the carriers in an assumed energy band above 
the considered discrete energies. 
For the calculation of the electrostatic potential the Poisson equation is solved. The 
macroscopic part of the simulation model consists of the 3D continuity and transport 
equations for hole and electron current densities as described in [5]. 

3 .  Numerical Method 

The 2D coupled algorithm is shaped as an inner iteration of the Schrodinger and the 
Poisson equation and an outer iteration where the transport model is solved [6]. 
Usually the inner iteration delivers a self consistent solution of Poisson and Schrodinger 
equation but for a good convergence of the whole algorithm often it is favourable to 
consider the transport equations after some or only one loop of the inner iteration. For a 
sure and successful iteration the change of the electrostatic potential is damped. The 
principle of the numerical algorithm is shown in Fig. 1 .  
The coupling of the microscopic and the macroscopic parts of the model takes place in a 
way described in [6]. It is based on the assumption that the sheet electron density at the 
heterojunction delivered by the microscopic Schriidinger equation and the density 
calculated by the transport equations have to be equal. For the solution of the microscopic 
density n by equations (3), (4) a Fermi level WF, is searched so that the integral of the 
electron densities in the quantum well realizes the condition above. The F e d  energy is 
assumed as constant in the whole area of the quantum well. 
The Schrodinger equation is transformed into an eigenvalue problem by the Rayleigh-Ritz 
method. The wave function I) is expressed as a sum of expansion functions in the form 

Q(X, Y) = 2 E v i ( x )  wj(y). 
i j  

In our simulations we have used Sinus functions [4] as well as B-Splines [8] for the 
expansion functions vi, w,. The advantage of Sinus functions is the independence of the 
number of expansion functions from the spatial discretization of the structure. The number 
of the expansion functions (i - j) is equal to the dimension of the eigenvalue problem. The 
resulting matrices of the eigenvalue problem are symmetric, which simplifies the solution 
method. We solve the problem by tridiagonalizing the symmetric matrix and than using the 
Sturm sequence and a bisection method to find the required eigenvalues. So the solution is 
less expensive than a finite difference or element method. 
The Poisson equation and the transport equations are solved by the finite difference 
method with a non equidistant discretization. 

4. Results and Discussion 

The coupled microscopic/macroscopic method is applied to several heterojunction 
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Fig. 1. Flowchart of the rnicroswpidmacroscopic Fig. 2. Conduction band edge and discrete 
simulation (Inclusion of more model equations energy levels at a AlGaAsIGaAs heterojunction 
is possible) 

Fig. 3. Electron density at a AlGaAs/GaAs Fig. 4. Electron density distribution 
heterojunction (bias V = 0 solid line, of a A l W G a A s - H E M T  structure 
0.1V dashed line,0.2V dotted line) (L.G = 200 nm, -6s  = b.SV, VDs = 0) 

structures. First we regard a simple abrupt G~.As/&.~G~,-,~A~ heterojunction. The GaAs is 
undoped, the A..3Gao,7As is 1018 ~ m - ~  n-doped. Fig. 2 is the ~ c u l a t e d  conduction band 
edge with the discrete energy levels at the heterojunction. With increasing bias the 
resulting electron density in the two dimensional electron gas increases (see Fig. 3). 

We have calculate the electron density of a high electron mobility transistor (HEMT) by 
the 2D algorithm (Fig. 4). The HEMT consists on a 50 nm-&.3%.7As-layer (1018 ~ m - ~  
n-doped) on a GaAs-substrate (undoped) with a gate length of 200 nrn. Furthermore 
results of two quantum wire structures are shown. Fig. 5 shows a GaAs-corner in an 
A..3Ga,,7As-area, Fig. 6 is a square GaAs-area surrounded by %.3Gao.7As. 
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Fig. 5. Electron density distribution of a quantum Fig. 6. Electron density dishiiution of a 
wire at a AlGaAdGaAs corner quantum wire of a (25 x 25) nm2 GaAs a r e .  

mounded by AlGaAs 

5. Conclusion 
In this paper we present a coupled microscopic/macroscopic simulation model with a 
complete 2D solution of the Schrijdiiger equation. An efficient solver for the differential 
equation and the resulting eigenvalue problem has been realized. The differences to the 
solution of a pure macroscopic model were shown by examples of several structures with 
III-V heterojunctions. 
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