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Abstract 

A new workstation-based rigorous model for 3D vector lithography simulation is introduced. The model 
extends a successful 2D lithography model, and has been applied to the simulation of 3D photomasks. The 
lheory behind the new model is presented, and examples are given of the model's results and computational 
efficiency. The procedures for extending the model to the simulation of 3D optical alignment, metrology and 
photoresist bleaching problems are also given. 

1. Introduction 

Decreasing dimensions and increasing non-planarity of devices are creating complicated 
problems for the optical lithography process in semiconductor manufacturing. The large 
cost and time necessary for experiments make rigorous photolithography simulation 
increasingly cost effective in the solution of these problems. These problems include the 
modeling of realistic coiners, contacts, vias, alignment marks and defects. We are present- 
ing a new vector 3D model which runs quickly on common engineering workstations. This 
model has been implemented into a simulator, METROPOLE-3D, for the study of 3D pho- 
tomask~.  

The basis for this work was the extension of the fast and rigorous 2D waveguide method, 
a spatial frequency solution to Maxwell's equations[l]. The 2D method was previously 
implemented into a simulator, METROPOLE, and applied to the study of optical alignment 
and metrology[l], substrate bleaching[2] and phase shifting masks[3]. A major benefit of 
the waveguide method is its ability to simultaneously solve for all incoherent incoming 
light orders. Traditional models must repeat their simulations for each of these orders, 
which in 3D modeling may number in the hundreds. 

2. 3D Theory 

The potential for a 3D waveguide theory using vector potentials was shown by 
Tanabe[5]. The E and H fields are described using vector potential A and scalar potential $ 
as: H = VxA and E = ikA - V o  . Inserting into Maxwell's equations provides the characteris- 
tic equation: V ~ A  + ~ ' E A  - v ( v * A )  + ikEV$ = O .  

Because of gauge Creedom, the vector and scalar potentials can be changed simulta- 
neously by A + A  - V A  @ - A and observables E and H are unaffected. 
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Implementing the Lorentz gauge, which provides V*A = ikc$ . allows writing the charac- 
teristic equation as V ~ A  + ~ ' E A  - v ( loge )  (VOA)  = 0 - 

Tanabe used the waveguide method approximation where non-planar structures are 
described by (often thin) layers in which the dielectric function is constant vertically (z -  
direction) but varies in the horizontal x and y directions (See Figure 1). This allows simpli- 
fying the z component of the characteristic equation in a layer to be V2Az + ~ ' E A ,  = 0 . 

However, gauge freedom still exists. This allows using the transformation 2 = 
az 

to set A, = 0 .  Significantly, the characteristic equation. which is Maxwell's equations in 
vector potential form in each layer, is reduced to two coupled partial differential equations: 

This formulation has only two variables to be solved for as opposed to three for tradi- 
tional methods. In this work, we solve these equations, beginning by using the relations, 

A, = f ( x . y ) Z ( z )  Ay  = g ( x , y ) Z ( z )  and Z ( Z )  = C , e x p ( a z )  + c ' . e x p ( - a z )  . 
Substituting tiuncated Fourier series for E ,  log E, f(x,yl and g(x,y),  such as 

where N is the # of approximating orders, we create a coupled eigenvalue problem for each 
layer which may be solved for the a, B and D coefficieni 

[ J I ]  B + [J,] D = -a2B and [ JJD+  [ J J B  = -a2D or 

where each Ji is a full complex matrix of size 4~~ x 4 ~ ~ .  

3. Boundary Conditions 

The C and C' coefficients still need to be calculated. These can be obtained from the con- 
tinuity of parallel components of the E and H fields between layers. Inside any layer j, we 
are able to write Ax and Ay using v , , ,  = exp i2n { b , k  + b2my) ) . at a relative z position (See 
Figure 1 ), as 

2N 

[ 

A: = z [d e x p ( 4  ( z  -2,)) + 4 .  e x p ( - a i  ( z  - z j ) ) ] z ~ ~ , l , m ~ l , m  
h = l  1 m 

2N 

A: = Z [ d ~ e x ~ ( d ~ i z - ~ ) ) + ~ ~ e ~ ~ [ - ~ ( z - z ~ ) ) ] ~ ~ d , , , ~ ~ ~ , ~  
h = 1  1 m 

In layer 0, where nlm = ik,,/e - ( rb , l ) '  - ( m b 2 h ) 2  , Ax and Ay are given by: 

In the substrate A, and A, are defined relative to the substrate depth, z,, as: 

At the interface of layers 0 and 1 .  we impose the boundary conditions and eliminate 

XO and yo to obtain: 

., [;I = 

kj which can be written as 
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We use boundary conditions between layers j and j+l to relate C coefficients 

Cl [zj = d + 1 [y I] or [ = [ and we use boundary conditions between 
Cd + 1 

the last layer and the substrate to write the expression: 

" [ ~ i  = 'b] or [ = ] . H and T have size 16N2 x %V2 For a structure 

with q layers, we combine Tmatrices to obtain = p p +  1p+2,,.p allowing us to 

where R contains the illumination 

information, XS & are the amplitudes of transmitted light and 9 & 9 are the amplitudes 
of light reflected from the structure. Thus, for modeling 3D photomasks we can compute XS 
and p, for 3D alignment and optical metrology we can compute 9 & 9 from C' and 
C" . and for modeling 3D photoresist bleaching, the internal light amplitudes in layers can 

be known by using the C and C' of a layer to solve for A, and Ay 

4. Results 

The model was implemented into a photomask simulator, METROPOLE-3D, which runs 
on engineering workstations. We have simulated examples of 3D binary and phase shifting 
masks for 1X and 5X reduction imaging systems. Rigorous simulation is necessary for 
masks with small structure sizes (approaching the wavelength of illuminating light) and for 
masks with vertical topography. These masks have light scattering effects which are not 
taken into account by approximate, scalar simulators. To verify the results of our model, we 
compared aerial images generated by METROPOLE-3D versus experimental images and 
those generated by a scalar model, SPLAT[S](See Figure 2). The imaging system had a 5X 
reduction factor, I-line illumination (h=0.365 micron), a numerical aperture of 0.6, and a 
partial coherence of 0.6. The images are cross sections for isolated contact openings of 0.49 
and 0.39 microns, after reduction, in a 10% transmission embedded attenuating phase shift- 
ing mask. The experimental aerial images were provided by SEMATECH. As can be seen, 
with the larger 0.49 micron opening, the results of METROPOLE-3D and the scalar model 
both match the experimental data well. However, for the 0.39 micron opening, where light 
scattering effects are more pronounced, only our rigorous vector model is able to accurately 
predict the experimental light intensity results. Modeling of these small mask features is 
important for the quick and accurate design of masks in the critical layers of next genera- 
tion devices. We also implemented theoretical checking routines for comparing the model's 
results against the conservation of energy and reciprocity theorems. Our model's error from 
the theoretical predictions is very slight, typically much less than 1%. 

5. Run Time and Memory Usage 

Traditional workstation-based rigorous lithography models may take days to complete 
complex simulations. The run time of our model on an IBM RS6000 model 550 worksta- 
tion is typically under a few hours for non-symmetric simulations. Simulations of fully 
symmetric structures typically iun in under an hour[6]. The memory usage is also moderate 
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for today's desktop workstations, typically using less than 120MB. 

6.  Summary 
Using a vector potential extension to an existing 2D electromagnetic solution method, 

we have created a new rigorous 3D lithography model. This model has been implemented 
in a photomask simulator for engineering workstations and has been shown to run quickly 
and accurately. In addition, the model is easily extendable to the efficient solution of other 
non-planar 3D lithography problems in optical alignment, metrology and photoresist 
bleaching. 
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Figure 1. 2D cross section of multiple layer approximation for slanted shifter phase shifting mask. The 
approximation is valid if the distance errors introduced are much less than the wavelength of light. 
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Figure 2. Cross sections of aerial images of 0.49 pn and 0.39 pn contacts in 10% attenuated PSM. 




