
SIMULATlON OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 6

Edited by H . Ryssel, P. Pichler - September 1995

Efficient Hybrid Solution of Sparse Linear
Systems

"Integrated Systems Engineering AG,
Im Dornacher 8, 8127 Forch, SWITZERLAND

bInstitut fiir Integrierte Systeme,
ETH-Zentrum, Gloriastr. 35, 8092 Ziirich, SWITZERLAND

Abstract

During a numerical simulation usually many linear systems have to be solved.
Using a direct method requires to factor each coefficient matrix separately. In
this paper we present a hybrid approach which combines our supernodal direct
solver with an iterative solver such that the iterative solver is called as often as
possible to avoid the computationally expensive factorizations.

1. Motivation

In the last few years the research efforts towards efficient solutions of sparse linear sys-
tems using direct or iterative methods have made significant progress. Unfortunately,
it seems impossible to find an universal method which is optimal with respect to
memory consumption and computational speed for all types of problems. Therefore,
so-called hybrid methods have been considered which use a combination of usually
stand-alone solution techniques. The idea behind such hybrid methods is that during
the solution of a problem one can select. the method which is known to work best on
a particular phase of the solution process whereas the normal approach uses only one
method for the whole solution process. Our approach uses a combination of iterative
and direct techniques to solve sparse structurally symmetric linear systems as they
appear in numerical semiconductor simulation.

2. The hybrid approach

Numerical semiconductor device simulation involves the solution of the discretized
device equations usually by a Newton approximation algorithm where each Newton
step requires the solution of a linear system describing the coupled device equations.
Especially during transient simulations a large number of linear system solves are
necessary in order to complete a simulation. The usual direct approach requires a
factorization for each linear system to be solved. Since factoring the coefficient matrix
is the most time consuming part of the solution process, it has to be avoided as often as
possible. Unfortunately, direct methods provide no means to avoid the factorization.
Consequently, we apply a preconditioned iterative method using a given factorization

A. Liegmann et al.: Efficient Hybrid Solution of Sparse Linear Systems

call S U P E R (A (O) , X (O) , ~ (O)) - LU = L(O)U(O)

3 = x(0). 6 = b(O)

for i = 1,2, . . . do

.z = 116 - ~ (~) ~ ~ ~ / ~ ~ 6 ~ ~
if z > threshold do

call S U P E R (A (~) , X (~) , ~ (')) - LU = L (%) U (~)
2 = x(i). 8 = b(i)

else

call C G S (A (~) , X (') , ~ (~))
if CGS fails do

call S U P E R (A (') , X (') . ~ ~ ~)) - LU = ,gi)u(i)
3 = x(i) ; 6 = b(i)

end if

end if

end for

Algorithm 1: The supernodal hybrid solution approach.

as a preconditioner. On the other hand, we are willing to invest a factorization, if
convergence of the iterative procedure is slow.

Algorithm 1 outlines the strategy of our hybrid approach which combines our sparse
linear solver SUPER [I] with the preconditioned conjugate gradient squared (CGS)
iterative method by Sonneveld [2] which is known to converge fast. As a precon-
ditioner the most recent factorization is used. Initially, our sparse solver SUPER is
called which solves the first linear system of the simulation process. Upon return from
the direct solver the LU factorization of the coefficient matrix, the solution vector,
and the right-hand side are saved in the data structures m, 3, and b, respectivelv.
There are used to estimate the norm of the matrix difference - mJ1. All further
linear systems are solved by either SUPER or CGS. The iterative process is started
only if condition

threshold 2 116 - A (~) z (I / I I ~ I I (1)
is satisfied. Parameter threshold denotes an upper limit for the relative residual norm
of the current coefficient matrix and the solution and right-hand side vectors from
the last-exact solution. This relative residual norm is a measure how much the two
vectors b and A("3 differ. If the relative residual norm is small, one can conclude that
the numerical values of and do not differ too much so that CGS is expected to
converge fast using as the preconditioner. If condition (1) does not hold, SUPER
is called; otherwise CGS is invoked. On the other hand, even if condition (1) is
satisfied, CGS is not guaranteed to succeed. In this case SUPER is called to compute
an exact solution.

3. Preconditioned CGS

Because we want to solve sets of linear equations with continuous parameter depen-
dent coefficient matrices, we expect the iterative procedure to be invoked only for
cases with eigenvalues of the iteration matrix sufficiently close to zero. If this is
true, CGS will converge fast; otherwise, one observes large oscillations in the residual
norm (31. This fact is used to interrupt the iterative procedure and to calculate a new
factorization. Furthermore, we restrict the number of iterations by the parameter
maxiter which is computed as the quotient of the measured times for a factorization
and for the first CGS iteration (initially, maxiter is set to 1). After the first iteration
maxiter is adjusted according to the measured times and the following formula:

[TI Tf
actorization maxiter =

rrst-CGSiteration
(2)

258 A. Liegmann et al.: Efficient Hybrid Solution of Sparse Linear Systems

procedure CGS
s = O ; r = b
for i = 1 to maxiter do

7 p] = b r
if (pl = 0) return failure

if z = 1 do

' U = T ; p = T
else

a = p1/p2; .U = T + 134
2 p = u + S q t P P

end if

P2 = P1
solve LUji = p
6 = A@; a = pl/(bT6)
q = u - a G
solve L U G = u + q
u=AG; x = x + a G
r=r-(11%'
call check-convergence(i)

end for

end procedure

Algorithm 2: The preconditioned CGS algorithm.

In other words, maxiter is set to reflect how many CGS iterations can be executed,
not exceeding the time required for a full factorization.
After the necessary vectors and scalars have been computed, CGS requires to solve
two linear systems. At this point, the preconditioner comes into play. Recall from the
previous section that our preconditioner is the LU factorization of the most recent
exact solve which is denoted as m. Consequently, only forward and backward sub-
stitution are required to solve the systems mp = p and L U G = u + q. This improves
the computational efficiency of the CGS algorithm significantly.
Eventually, the solution vector x and the residual r are updated. The relative residual
tolerance z = Ilrlllllbll is then used to check convergence of the preconditioned CGS
method. Depending on this value, it is decided whether CGS is considered to have
failed, the solution is found, or another CGS iteration has to be performed.
At this point of the CGS algorithm, the method is considered to have failed in the
following cases:

1. z > maxnorm
If the relative residual norm exceeds the predefined limit given by the parameter
maxnorm, the CGS process is expected to converge too slowly.

2. i = maxiter/2 A z > d m
Parameter mintol specifies the accuracy z has to achieve so that the linear
system is considered as solved. If we have not reached an accuracy of
after half of the iterations allowed, convergence is considered to be too slow.

3. i 2 maxiter A z > mintol
If CGS has not been able to solve the system with accuracy mintol after maxiter
iterations, the iterative process is stopped.

These failure criteria are used to optimize the behavior of CGS in a way that per-
formance loss is minimized if the CGS process has to be stopped and replaced by a
direct solve.

4. Performance of the hybrid solver

Figure 1 displays the effect of our hybrid approach on the overall execution time
for a 3D transient simulation of an IGBT. The simulation was performed on an

A . I,iegn~arln ct. al.: Eficirrlt I l y b r ~ d Solu t io~~ of Spars? Linea~. Syst,rn~s

Figure 1: The effect of using a hybrid approach on the overall execution time for a
3D transient simulation of an IGBT (grid size: 7790 points) on an IBhI RS/6000-590.
The upper curve denoted with *, depicts the accumulated time when SUPER is used
exclusively. The lower curve marked with + shows the accumulated simulation time
using the hybrid approach.

IBM RS/6000-590 workstation. The grid size of this device was 7790 points (i.e. one
coupled linear system has .n = 3 x 7790 = 23370 unknowns). The upper curve, marked
with *, shows the accumulated execution time of the simulation when only the direct
sparse supernodal solver SUPER was used. Here, the simulation required more than
60 hours wall clock time to complete. The lower curve, marked with f, displays the
significantly smaller execution time of the same simulation using the hybrid approach.
In this case, the simulation was finished after 16 hours wall clock time. This means,
using the hybrid approach we were able to speed up the simulation by almost a factor
of four! The reason for this speedup is that out of the 4819 linear systems solved
during the simulation only 446 factorizations were required. The remaining systems
could be solved by CGS.

References

[I] A. Liegmann and W. Fichtner, "The application of sparse supernodal factoriza-
tion algorithms for structurally symmetric linear systems in semiconductor device
simulation", In S. Selberherr, H. Stippel, and E. Strasser, editors, Sirlulation o f
Semiconductor Dcviccs and Proccsscs, vol. 5, pp. 77 80, Springer-Verlag, 1993.

[2] P. Sonneveld, "CGS, a fast Lanczos-type solver for nonsymmetric linear systems",
SIAM Journal on Scicntific arid Statistical Computing, vol. 10, pp. 36 5 2 , 1989.

131 I1.A. van der \Torst, "Lecture notes on it,erative methods", Technical Report
No. 838, Department of Mathematics, University, Utrecht, 1993.

