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Abstract 

Improved NGP and CIC particle-mesh schemes are suggested, and a NEC 
scheme proposed, to help reduce self forces in Monte Carlo semiconductor de- 
vice simulation. An attempt to design a scheme with reduced self forces for 
unstructured triangular meshes is unsuccessful. 

1. Introduction 

A proper coupling between charged particles and Coulombic forces is required to 
maintain temporal stability and spatial accuracy in self-consistent Monte Carlo device 
modeling. Particle-mesh (PM) coupling can be broken into four steps[l]: 

1. assign particle charge to the mesh; 
2. solve the Poisson equation on the mesh; 
3. calculate the mesh-defined forces; and 
4. interpolate to find forces on the particles. 

The usual charge assignment and force interpolation schemes employed are nearest- 
grid-point (NGP) or cloud-in-cell (CIC). Both schemes guarantee zero self force, i.e., 
the force a charge exerts upon itself due to numerical artifacts. As stated in [I]: 

At best, the presence of the self force presents a nonphysical restriction 
on the time step and, at  worst, it is disastrous. 

The classical NGP and CIC schemes depend on two severe assumptions: (a) constant 
permittivity, and (b) tensor product mesh with uniform spacing in x- and y-axis 
directions. While it is straightforward to exercise NGP and CIC schemes for non- 
uniformly spaced tensor-product meshes and/or spatially dependent permittivity, it 
is also incorrect: self forces will not be zero, or even necessarily small. 

After discussing the importance of self forces, this paper describes improvements to 
the NGP/CIC charge assignment/force interpolation schemes which do not require 
assumption (a) above, and a new nearest-element-center (NEC) scheme which, in 
addition, relaxes assumption (b). This leads naturally to a discussion of designing a 
scheme for unstructured triangular meshes, and how finding such a scheme remains 
an open question. The discussion here assumes two space dimensions throughout, 
although the extension to three dimensions is obvious. 

2. Self-Forces and Their Importance 

Discussing self forces is only relevant if the Coulombic forces are obtained self-con- 
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sistently in time with particle position. Any smoothing of the electric field in time 
(e.g., [2]) or using a time-invariant ("frozen") field (e.g., [3]) renders a discussion of 
self forces irrelevant, as the force does not track instantaneous particle motion. 

In its simplest embodiment, self-forces arise due to the failure of a non-uniformly 
spaced mesh to resolve symmetrically the potential singularity of a single charge (in 
2D, a line charge). Differencing this potential and interpolating back to the charge 
position yields an erroneous, non-zero force exerted by the charge upon "itself". But 
note, self forces may locally be small compared to the total force. Self forces are 
expected to be most serious in regions of a device where internal fields are "low". 

3. Improved NGPICIC and the NEC Scheme 

An improved NGP/CIC scheme can be obtained by altering step 3. These schemes 
(denoted NGP* and CIC*) pertain to the case when permittivity depends on position, 
yet the mesh spacing still obeys assumption (b). First, some notation is required: con- 
sider a uniformly-spaced, tensor product mesh with meshlines xi, i = 1,. . . ,N, and 
yj, j = 1, . . . ,Nu .  Permittivities are considered constant within each mesh element 
(for simplicity only) and are denoted eij.' Define centered finite-differences of the 
potential $J in the x- and y-axis directions at element midpoints as follows: 

For the NGP* and CIC* schemes, the new step 3 becomes: 

3*. calculate the mesh-defined electric field at  the four eler~ient vertices (k, l) ,  2 k e  = 
[EL; E[e], as Eie = (tk-i.j A;-1 + t k j  A;+4,e)/(2tij), Ele = (ti,!-1 A:,e- + 

2 ,e 
Cie  A:,e+a)/(2eij), for k = i, i + 1 and e = j, j + 1. 

The standard NGP/CIC schemes use Eie = A;+$)/2 and E[e = (A:,ea + 
A:,e+f)/2, which are incorrect if permittivity is spatially dependent. 

Before describing the NEC scheme, a short digression is necessary: unfortunately, the 
NEC scheme only yields "approximately zero" self forces. To understand this, consider 
the canonical self force Gedanken experiment: a single line change Q is placed upon 
a two-dimensional mesh of infinite extent (-00 < x, y < m). With no other charges 
present, no boundaries where induced charges may reside, and a constant permittivity 
everywhere, this charge should not experience any acceleration (the force on Q, i.e., 
the self force, should be zero). This requires the charge assignment/force interpolation 
schemes be the same and forces be equal and opposite between two charges[l]. This 
latter condition can be restated: if Q is located on a mesh node p, then the force 
at  any other mesh node o depends only on the directed distance separating p and 0. 
This is obvious, and can be rigorously proven for a tensor-product mesh with uniform 
spacings in the x- and y-axis directionll]. Physically the force behaves exactly this 
way; for this category of meshes the discrete case reproduces this behavior. To my 
knowledge this is not rigorously true for unstructured meshes nor for non-uniformly 
spaced tensor-product meshes; however, assume this is approximately true for all 
two-dimensional meshes in what follows2. The extent to which it is not true in the 

'Elements, and elemental quantities like permittivity, are indexed by the minimum i and j indices 
of the element. 

2Computations indicate this "approximation" is remarkably true, to within a 1% error; can this 
be shown rigorously7 
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discrete case is responsible for nonzero instead of truly zero self forces. I shall call 
this the "well-behaved forces" assumption (WBF). 
The nearest element center (NEC) charge assignment/force interpolation scheme will 
now be described. This scheme attempts to reduce self forces in the presence of non- 
uniformly spaced tensor-product meshes and/or spatially-dependent permittivity. In 
addition, the NEC scheme can be utilized in one axis direction (where local mesh 
spacing is non-uniform) and the CIC* scheme can be utilized in the other (where 
local mesh spacing is uniform). Such hybrid schemes, dubbed NEC-x-CIC*-y or 
NEC-y-CIC*-x, offer smoother assignment/interpolation on the mesh compared to 
pure NEC. 
Consider a line charge p residing at (x, y) in a rectangular mesh element (i,j) with 
permittivity ~ i j .  The new steps of the (pure-)NEC PM scheme are: 
1'. assign the line charge equally to the four mesh points of the element (i, j ) ;  
3'. calculate the fields A:++,,, I = j, j + 1, and A:,'.++, k = i, i + 1; 

4'. interpolate the field d(rl y) = [Ex; EY], according to Ex = (A:++,'. + A:++,j+l)/2, 

EY = + Ay+l,j++)/2. 

The NEC designation derives from the appearance, in step l', of moving the charge 
to the center of its element and applying a CIC assignment scheme. The NEC scheme 
involves only one mesh element and its four nodal values of potential. This locality 
makes the method well-suited to non-uniform mesh spacings and permittivity. 
The NEC-x-CIC*-y scheme involves only ( i , j )  elemental quantities for x-directed 
fields, but not for y-directed fields. The new steps of the NEC-x-CIC*-y scheme are: 
1". conceptually move the charge from its location (x, y) to (0.5(xi + xi+l), y) and 

apply the CIC charge weighting scheme (denote these CIC weights as wijr 
w,,,+i and wi+l,j+~; note wi, = wi+l,j and wi,j+i = wi+i,,+i); 

3". calculate fields and as in pure-NEC; calculate fields Ele, k = i, i+ 1 

and e = j ,j  + 1 as in CIC*; 
4". interpolate the field E(x, y) = [Ex; EY] according to Ex = (wii + W.+~,,)A:++,~ + 

( ~ i . ~ + l  + ~ i + i ~ + i ) A " ~ , ~ + ~  , Ey = &=i,i+l;e=j,j+l wkeEle, where the wij are the 
CIC weights from step 1". 

The other mixed scheme, NEC-y-CIC*-x, is defined analogously. 
The mixed schemes provide for smoother assignment and interpolation in the T I C "  
direction. In a device simulation context, the decision whether to apply NEC or 
CIC* in the x-axis direction (for example) in the vicinity of element ( i , j )  is: if the 
local x-axis mesh spacing is constant (i.e., xi - xi-1 = x2+1 - xi = xi+2 - xi+l), and 
the local permittivity is constant (i.e., E , + ~ , ,  = ~ i j  = ~ i + ~ , j ) ,  and none of the nodes 
(k, P), k = i - 1 , .  . . , i + 2 and e = j ,  j + 1 are contact nodes, then CIC* should be 
used; otherwise, NEC should be employed. Applying analogous rules in the y-axis 
direction leads to four outcomes for element ( i , j ) :  pure NEC or CIC*, or the two 
hybrid schemes. 

4. What About Unstructured Triangular Meshes? 

Consider a triangular element 7 with nodes i: j, k in an unstructured triangular mesh 
of infinite spatial extent. A line charge presides at  (x, y) within 7. Assume the poten- 
tial is a linear function of position within 7, i.e., $(x, y) = y!~~N~(x, y) + $jNj(x, y) + 
$kNk(x, y), where the Nt(x, y) are the linear shape functions associated with 7.3 Will 

3Linear shape functions on triangular elements are the simplest shape functions which are local 
to  the element, making them a natural choice(41. 
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any charge assignment scheme yield a PM coupling with zero self force (in the WBF 
sense) for a simple PM scheme? Consider the four steps: 
la. Charge assignment is left unspecified; assign charge to nodes as p = [pi, pj, pk]T = 

p[ci, cj, ckIT = PC, where j,k C! = 1 by charge conservation. 
2a. Solve the Poisson equation; the charges at the nodes will result in a potential 

9 = GQ, where (o = [$i, $j, $kIT and G = (gij) is a 3 x 3 matrix extracted from 
the inverse of the Laplacian on the infinite mesh. The WBF assumption dictatcs 
the form of G: diagonal entries are all equal and the matrix is symmetric. 
Therefore, 

where 0 < a, ,8, y < 1 and a, ,f3 and y are not equal in general. 
3*-qa. The electric field in 7 is the constant vector I? = -V$ = - C $ J ~ V N ~ .  

Since the field in 7 is everywhere the same, field interpolation is automatically 
accomplished. 

A zero field on the original line charge p(x ,  y) is sought; therefore, the field in step 
4a should be zero. Obtaining I? = 6 can only occur if $i = qhj = $k (straightforward 
to show, but not proven here). A charge weighting scheme c that gives equal nodal 
potentials obeys: 

This has a complicated solution (c IX ~ - ' [ l  1 ljT) and a simple solution ( q = cj = 
ck = 5 ,  if a = ,8 = y). To be useful, the charge weights c should be local functions 
of the element since a, /3 and y are global functions of the entire mesh, c should 
be independent of a, P and y. This requires the complicated solution be discarded. 
The simple solution obtains c independent of a ,  P and 7 as required, but only when 
a! = ,8 = y. This implies the mesh be composed of identically-sized equilateral 
triangles, which is not a very useful "unstructured" triangular mesh! Can a useful PM 
coupling for unstructured triangular meshes be designed which yields zero self forces 
(in the WBF sense)? To my knowledge this important question remains unanswered. 

5. Conclusions 

The NEC*, CIC* and NEC PM schemes are proposed to reduce self forces. Hybrid 
combinations of these methods are described. An attempt to design a PM scheme for 
unstructured triangular meshes is successful only for meshes of equilateral triangles. 
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