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This paper investigates the time stability of self-consistent Monte Carlo-Non 
Linear Poisson simulations (MC-NLP). A simplified analytical stability theory 
has been developed and verified by means of extensive simulations. The prop- 
erties of the MC-NLP scheme are compared to those of Monte Carlo-Linear 
Poisson (MC-LP) scheme. The influence of statistics collection and charge as- 
signment algorithms is also analyzed. 

1. Introduction 

Self-consistent Monte Carlo-Poisson simulation is typically based on the linear form of 
Poisson equation (LP). As recently demonstrated [ I ] ,  this approach can lead to instability, 
hence to unphysical results, unless the time step between successive Poisson solutions (hi) 
is appropriately chosen. Stability forces to choose very small At ,  resulting in long CPU 
times. 

In principle, the non linear formulation of the Poisson equation (NLP), in which charge con- 
centration is expressed as an exponential function of potential and pseudopotentials, helps 
to alleviate these problems due to the damped sensitivity of potential to charge fluctuations, 
typical of Monte Carlo simulation [2]. In the following, the time stability of coupled Monte 
Carlo-Non Linear Poisson simulation will be studied in detail by means of a.n analytical 
theory and extensive simulations. 

2. Analytical theory of MC-NLP time stability 

Following the guide example of [I],  we first derived a linearized analytical theory of Me-NL P 
stability for a uniformly doped semiconductor at zero applied field. All relevant quantities 
(concentration n, field E, velocity u )  are the sum of a steady state value and a perti~rbation 
( A  = ADc + , 4 ( ~ , 1 ) ) .  The perturbation is expressed as ~ ( 7 , t )  = ~ e " ~ e - " '  where k = F, 
X being the perturbation wavelength. In addition we have n D c  = N o ,  EDc = 0, I L D ~  = 0 .  
The system is described by the first two moments of the Boltzmann equation and by the 
non linear form of the Poisson equation. Neglecting space discretization and assuming a 
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constant effective mass m * ,  these equations can be easily linearized and discretized in the 
time domain. In particular, the discretized non linear Poisson equation reads: 

where q  is the electron charge, c, the semiconductor dielectric constant, VT the thermal 
voltage, and En = E ( t n )  is the perturbation field. The system of equations can be solved 
exactly between tn and 2 ,  + A t  under a constant perturbation field En, thus obtaining a 
third order characteristic equation in the quantity r = eCwA' 

where u, = q /pom*  is the scattering rate (related to  low field mobility p O ) ,  wp = ~ q 2 n D c / t 3 m *  
is the plasma frequency, 17 = uC/wp,  cr = u c A i ,  6 = e-", L D  is the Debye length, /3 = 
( x / L ~ ) <  7 = 1/(1 + P ) .  The main differences between Eq.(2) and the corresponding one 
for MC-LP [ I ]  are: 1) the equation is cubical in z (instead of being quadratic) since the NLP 
equation (1 )  depends on the field a t  the previous iteration; 2) the perturbation wavelength 
X (i.e. /3) never cancels out. Fig.1 compares the stability domain (121 < 1) of MC-NLP to 
that of MC-LP for a few values of P.  Since ,B can be assumed to  have an uniform spectrum, 
the instability domain of MC-NLP appears to be larger than that of MC-LP. 

3. Simulations 

The above analysis is based on a linear approximation neglecting space discretization and 
the non linear dependence of scattering rates on energy. To verify its accuracy, we employed 
a simplified 1D MC code featuring one parabolic band, optical and acoustic phonon scat- 
tering and periodic boundary couditions. Transport parameters were tuned to reproduce 
drift velocity [3] and mean kinetic energy [4] in the low field regime. For self-consistent 
simulations we employed a uniform grid with spacing equal to the Debye length. First, 
particles are placed uniformly in space with Maxwellian energy distribution; then, their 
motion is simulated according to the total scattering rate, until the Monte Carlo iteration 
ends. Finally, the charge is assigned to each grid node, and the Poisson equation is solved. 

Fig.2 reports simulation results of a uniformly doped bar for different values of v,/w, and 
w p A t .  It shows that while the analytical theory is reasonably accurate in predicting the 
stability of the simulation conditions (filled symbols), unpredicted stable solutions (open 
symbol) can be obtained in t h ~  proximity of the limit ,B i 0, representing the boundary of 
the region stable for any P. Fig.3 shows the time evolution of mean kinetic energy ( W )  for 
parameters corresponding to  MC-NLP instability. Notice that identifying stable simulations 
is not always as simple as Fig.3 may suggest. As an example, Fig.4 shows W for a few 
simulations featuring large w p A t .  The one performed with MC-NLP is apparently stable, 
while the MC-LP ones are clearly unstable. flowever, the electrostatic field energy increases 
continuously for both schemes (Fig.5). Thus, both simulations are actually unstable [ I ] .  

The stability domains of Fig.1 imply severe restrictiorls on the choice of At for both MC'-1,P 
and MC NLP, with significant increase of the CPU time spent for solving Poisson equation. 
To explore ways of relaxing these tight constraints, we investigated different methods f o ~  
collecting statistics: Before Scattering (BS) and Ensemble Monte Carlo JF,MC) [5] to  collect 
data; Nearest Grid Point ( N G P )  and Cloud in Cell (CIC) [6] to assign charge to  the grid. 
EMC advances particles synchronously and collects statistics at  the end of each iteration, 
while RS moves particles asynchronously and collects statistic just before each scattering. 
NGP assigns the whole charge of a particle to the nearest mesh point, while CIC spreads the 
charge over the cell and assigns it to  its vertices according to their distance from the pa~ticle.  
l'ig.6 shows results obtained using MC-LP, short lime step and two extreme configurations: 
DSf NGP and EMCf CIC'. As can be seen, EMCtCIC provides stable solutions for w p A t  
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twice as large as that of BS+NGP. Eq.(2) cannot predict this result because it neglects 
space discretization. 
To further investigate the properties of MC-NLP, we simulated a 1-D n+ - n - n+ diode 
( N o  = 10" - lo1'- 1018) with different methods. We compared the average device current 
obtained with the configuration featuring the largest stability domain (EMC+CIC+LP+ 
short At )  to  that one computed using (BStNGPtNLPt long  At), as in [2]. Fig.7 and Fig.8 
show the corresponding results as a function of the simulation time for the same total CPU 
time. Although parameters are such that the MC-NLP simulation should be unstable, the 
NLP algorithm damps oscillations within limits only slightly larger than those of LP, while 
it still provides the same average current (CZ 1.8mAlPm2). On the other hand, MC-NLP 
does not reproduce the details of the initial velocity overshoot due to  the long At, but 
collects enough statistics for comparable standard deviation in less CPU time and memory 
occupation than MC-LP, thus providing a significant performance advantage. 

4. Conclusion 

We have analyzed the performance trade-offs of different self-consistent Monte Carlo-Poisson 
solution schemes, showing that: a) EMC+CIC+LP provides the largest stability domain and 
reproduces time dependent physical effects a t  the expenses of very large CPU and memory 
requirements; b) BS+NGP+NLP has a smaller convergence domain, but the uncertainty 
on terminal currents and other physical quantities is often acceptable even in unstable 
conditions. Hence, with respect to LP solution schemes much larger time steps or less 
particles can be chosen, with a significant reduction of CPU and memory requirements. 
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Fig.1 Stability regions as a function of collisionality Fig.2 Numerical stability of MC-NLP as a func- 
v , /wp  and normalized time step wpA2 for linear Pois- tion of collisionality v , /wp  and normalized time step 
son [I] and non linear Poisson (NLP)  with different w p A l .  Lines represent the analytic thresholds from 
normalized perturbation wavelength /3 = ( X / L D ) 2 .  Fig.1. Markers represent simulation results: open For 

stable, filled for unstable. 
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Fig.3 Mean kinetic energy in KT units as a function Fig.4 Mean kinetic energy in KT units as a func- 
of the simulation time with v,/wp = 0.2 and wpAd = tion of the simulation time for a few s~mulations of 
0.35. As expected from Fig.1, the MC-NLP solution a uniformly doped bar featuring large wpAl 
is unstable. 
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Fig.5 Electrostatic field energy as a function of the Fig.6 Numerical stability of bS4C-LP as a function of 
simulation time for the same simulations and using collisionality v,/wp and normalized time step wpAd 
the same symbols of Flg.4. for two different3 methods of computing statistics. 

Dashed line is the analytic stability threshold. Mark- 
ers represent results of simulations: open for stable, 
filled for unstable. 
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Fig.? Average device current of MC-LP for different Fig.8 Average device current of MC-NLP. The ratio 
number of simulated particles . Solid line: 2 x 10' (standard deviationlmean value) is computed over 
part. ;  dashed: 1 x 10' part. The ratio (standard the data  of 20ps. At  = 0.5ps. The number of simu- 
deviationlmean value) is computed over the data  of lated particles is 5 x lo4. 
the last 0.5ps of simulation. A t  = 0.002ps. The CPU 
scale refers t o  the 2 x lo5 particles case. 




