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Abstract 

A previously developed hydro-kinetic concept based on evolution of the distribution 
function is used to arrive at an efficient approach to solving the Boltzmann transport 
equation (BTE) in ultra-fast transient situations. The solution can properly account for 
effects of extreme non-equilibrium phenomena. The approach is applied to study the 
temporal evolution of the electron distribution in n-type Si. Results from the Monte 
Carlo method are also included to verify the accuracy of the proposed approach. 

1. Introduction 
Performance and reliability of the submicron devices have been found to be strongly 
influenced by the hot-electron behavior which, for example, might result in leakage gate 
current and device degradation [1,2]. To study these hot-electron effects, the carrier 
distribution function in the device needs to be determined. Therefore, in addition to non- 
stationary transport parameters including density n, mean energy E, and average velocity 

knowledge of the non-stationary and/or hot-electron distribution function also becomes 
crucial in small devices. 

Various approaches to the distribution function have been used to study non-stationary or 
hot-electron phenomena in devices. Among these, the efficient approaches using the 
displaced Maxwellian [3], Legendre polynomial 141, and the energy-dependent distribution 
[5,6] are commonly used. However, these methods all have some severe limitations in 
highly non-stationary and/or hot-electron situations [6]. To more accurately determine 
the distribution function, the Monte Carlo simulation is usually used although it demands 
a large CPU time. In this study, an efficient approach to the hydro-kinetic distribution 
evolving at the velocity relaxation scale is proposed. This approach is applied to study 
the fast temporal evolution of the distribution function related to relaxation of the 
transport parameters of electrons in Si. 

2. Theoretical Background - The Hydro-kinetic Transport Concept 
The hydro-kinetic concept [6] is presented in Fig. 1 where the axis represents the time 
scale of the distribution function. The exact solution of the BTE is given by the kinetic 
distribution function f@) where k is the wave vector. The BTE is only valid for the 
time scales greater than the collision duration time, 7,. The hydro-kinetic concept is 
based on the fact that, when use the moments (hydrodynamic parameters) to describe the 
kinetic distri_buQon function, it requires an infinite set of moments, namely f@) 
=f@,n,FCd,k4,  ...). Therefore, relaxation times of the moments can be used to 
characterize f@). 
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In general, T, > 7, > 7, (the canier density, energy, and momentum relaxation times, 
respectively) in semiconductors, and relaxation times of higher order moments are 
assumed to be less than 7,. As illustrated in Fig. 1, after a sudden change in field, 
information described by the higher-order moments will vanish faster than that described 
by n, Eand E As a consequence, after a sufficient time, ffi) will evolve into a rm-scale 
hydro-kinetic distribution fmfi,n, @ which takes into account temporallspatial variations 
through the changes in n, rand E fm thus varies as fast as r a n d  is valid for the scale 
of interest on the order of 7,. To determine fmfi,n, E, @, n, E, and Hhave to be solved 
from the hydrodynamic equations which are written as 

where p i s  the average momentum, and the relaxation times are defined in terms of 
integrals of the distribution function and transition rates over Kspace. [7] At the scale 
near T,, fm is used to evaluate the relaxation times which therefore becomes Eand K 
dependent, as illustrated in Fig. 1 .  
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Fig. 1 : Evolution of the distribution function 

At a scale on the order greater than 7, (i.e., near T,), the H dependence becomes 
insignificant because generally T, > 7,. The distribution therefore evolves into a 7,-scale 
hydro-kinetic distribution f,fi,n, that varies as fast as ;and is only valid at scales on 
the order of r6. At this scale, f,(k,n, is used to evaluate the relaxation times which 
thus becomes only energy dependent, as shown in Fig. 1. For a scale much greater than - 
T,, E and Hare close to the steady state, and the carrier behavior can be described by the 
quasi-equilibrium distribution function, f,. 

3.  r6- and rm-Scale Hydro-kinetic Transport Models 

The approach to the 7,-scale hydro-kinetic distribution f, has been introduced in a 
previous paper [6], In the current study, the evolution process of the distribution from 

fm into f, is presented. The evolution due to scattering is assumed to be a relaxation 
process influenced by Fand prelaxation and the change in field. The relaxation of the 
hydro-kinetic distribution function can be performed numerically with given 4: 

where is the relaxation rate for fm evolving toward f,, and ~t=t'+'-t' .  f: is taken 
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as an initial distribution to evaluate the next step distribution, gfS,+'. The difference 
between f, and f, at each time step tends to reduce and is, for a relaxation process, 
proportional to q(-At/?,,) due to the scattering process. On the other hand, Ak, denotes 
the shifted amount in k space influenced by the electric field. 
f, at each step can be solved if & and T,, are determined. The solution of Eqs. (la)- 
(lc) can be used to assist in determining Ak, and rh. The relaxation of r and  Eat  each 
time step can be obtained by taking the moments of the Eq. (2). The solution of these 
relaxation equations for Eand k-must be consistent with that from Eqs. (la)-(lc). This 
therefore determines Ak, and rh at each time step, and then f, is determined from Eq. 
(2). In this study, only the energy-dependent relaxation times are used in Eqs. (la)-(lc) 
to calculate the hydrodynamic parameters. To include the momentum dependence in the 
relaxation times, the determined f,, as discussed in See. 2, needs to be used to evaluate 
the relaxation times that are then used again to solve Eqs. (la)-(lc) for the hydrodynamic 
parameters. The iteration will provide more accurate results for hydrodynamic 
parameters and f,, and will be studied in the near future. 

4. Application 

Using the 7,- and 7,-scale hydro-kinetic models, the response of a homogeneous 
concentration of electrons in n-type Si at 300K to a rapid increase in electric field is 
investigated. Results including the mean energy, average velocity, and the distribution 
function (f, and f,) obtained from the hydro-kinetic models are examined and compared 
with those determined by the Monte Carlo simulation. It is assumed that no impact 
ionization is involved. 
A step field increasing from 5 to 30 kV/cm within 0.1 psec is applied, and E and F 
responding to this field are given in Figs. 2a and 2b, respectively. It is shown that rand 
Fcalculated from Eqs. (lb) and (lc) are in very good agreement with the Monte Carlo 
results. An evident velocity overshoot is observed due to the drastic increase in field. 
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Fig. 2: Evolution of (a) mean energy (b) average velocity 

The evolution of the distribution function under the influence of the step field is also 
shown in Figs. 3a-3e where f, f,, and f, are illustrated at t,-t,. Figs. 3a-3e clearly 
show that the 7,-scale distribution f, evolves more slowly than f. This is because, as 
illustrated in Fig. 1, influenced of velocity relaxation is not properly accounted for in f,. 
As a result, f, starts to deviate from f when Fincreases rapidly due to the drastic 
increase in field. The discrepancy becomes significant during the overshoot interval as 
shown at t2-t4. On the contrary, f, and f evolve closely over the simulation time since 
effects of velocity relaxation during the overshoot interval is properly included in f,. 
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The maximum deviation between f, and f is found at the time when ;starts to decrease 
from the overshoot peak, as shown at tq. However, the deviation is very small. 

5. Conclusion 
The study shows that the hydro-kinetic concept based on time scales of the hydrodynamic 
parameters can be used to characterize the evolution of the distribution function. The 
concept also leads to an accurate and efficient technique to solve the BTE. In the case 
of strong velocity overshoot, since fm can include effects of velocity relaxation, fm 
provides a much better description than f,. The CPU time required for solving the 
temporal evolution of the distribution and hydrodynamic parameters given in Figs. 2 and 
3 is only about 10 seconds on a 486133 PC. The approach to f, might be an efficient 
method to study the phenomena associated with hot-electron effects in submicron devices. 
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Fig. 3: Evolution of the distribution function. The times tI-t, are indicated in 
Fig. 2. Symbols denote f calculated from the Monte Carlo method, solid lines 
represent fm, and dots denote f,. 
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