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Abstract 

Eere we report on the development of a new parallel, scalable and portable 3D f ~ t e  element 
power semiconductor device simulator. The emphasis in the design of this simulator is 
placed on the FE grid generation, on the optimised parallel generation and assembly of the 
discretization mahices, and on the development of a suitable, scalable linear solvers. For 
discretization use topologically rectangular FE grid based on non-rectangular bricks. 

1 .  Introduction 

The cellular structure of most power devices requires a 3D solution of the basic 
semiconductor equations. The octagonal or hexagonal shape of typical power 
MOSFET, IGBT or MCT cells [I]  and their complex doping distributions require a 
finite element (FE) discretization. In many cases more than one cell should be included 
in the simulations in order to obtain an adequate description of the device behaviour. 
The size and the computational complexity of the problem make it a distinguished 
candidate for massively parallel implementation. Only recently has a more systematic 
approach been applied to the design of parallel device simulation codes [2]. To achieve 
better results the design of the parallel simulation software should reflect the 
architecture of the parallel platforms. 
Here we report on the development of a parallel, scalable and portable 3D finite 
element power semiconductor device simulator. It is based on a spatial decomposition 
of the simulation domain over an array of processors [3]. This approach minimises the 
interprocessor communications by reducing the ratio between the bulk and the surface 
of the partition subdomains. The emphasis is placed on the generation of topologically 
rectangular FE grids amenable to the domain decomposition approach, on the optimised 
parallel generation and assembly of the discretization matrices, and on the development 
of suitable, scalable linear solvers. 

2. Spatial Device Decomposition 

Our parallel power semiconductor device simulator is designed for Multiple 
Instructions Multiple Data (MIMD) parallel computers with distributed memory. It is 
based on the spatial device decomposition approach . 
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To enhance the portability of the simulator, the code is split into two distinct parts: a 
hardware dependent communications harness and the simulation engine. The 
communications harness provides all global and local communications between the 
processors necessary for the proper operation of the simulation engine. The simulation 
engine is designed to operate on an arbitrary ID, 2D or 3D array of processors 
including a single processor. This means that the solvers are virtually independent of 
the processors topology if the necessary global and local communications are provided. 
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Figure 1: Theoretical speed-up of a Figure 2: Partition of the 3D device 
hypothetical 3D linear solver based on a simulation domain on a 2D array of 
ID, 2D and 3D array of processors mesh connected processors 

The simulator can work with both a rectangular finite difference grid and a 
topologically rectangular finite element grid. This simplifies significantly the 
partitioning of the solution domain on the array of processors and the design of the 
communications harness. It is clear that the best processor configuration for spatial 
device decomposition of the topologically rectangular 3D grid is a 3D array of mesh 
connected processors. This is illustrate in Fig 1 where the theoretical speed-up of a 
hypothetical linear solver [4] is plotted as a function of the size of a nxnxn rectangular 
grid. The grid is partitioned on 64 processors organised in three different 
configurations: a 64 processor pipeline, an 8x8 2D array and a 4x4~4 3D array of 
processors. However we are restricted to a 2D array of processors on our Parsytec 
parallel computers. The spatial device decomposition of a 3D device on a 2D array of 
processors is illustrated in Fig 2. The solution domain is automatically decomposed into 
NxM subdomains in one grid plane (i J). All corresponding grid point in the third grid 
direction k lie on the same processor. To achieve better speed-up each subdomain in the 
(i J)  plane should be as square as possible. 

3. Solution Domain and Grid Generation 

The solution domain and the generated grid depend on the structure of the simulated 
device and the doping concentrations inside. The grid generation in the solution domain 
proceeds on a single processor. After the grid generation the doping profile is assigned 
to the grid points, the material type is assigned to each finite element and the boundary 
conditions are identified. The generated grid with the doping, material and boundary 
conditions information is than distributed over the processor array. The distributed 
semiconductor solver is universal and independent of the particular device structure. 
The grid generation approach is illustrated on an example a typical octagonal IGBT. 
Because of the symmetry the simulation domain involves only one quarter of the cell. 
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Figure 3: Solution domain and discre- Figure 4: Partition of the (ij) plane of 
tisation of octagonal IGBT. The boron the domain from Figure 3 on an array of 
profile in the cathode region is indicate 3x3 processors 

The finite element grid is a topologically rectangular grid. It keeps the number of grid 
points along the grid lines constant in each one of the index directions i and j. The grid 
is based on distorted bricks. The grid generation process is determined by specified 
contours in the solution domain. In this particular example the guiding contours are the 
shape of the gate electrode and the metallurgical p-n junctions in the device. An 
example of the partitioning of the ( i  J) plane of the solution domain on an array of 3x3 
processors is given in Figure 4. 

4. Parallel Discretization and Solution 

We have adopted the decoupled Gummed procedure for the solution of steady-state 
problems and a modification of the decoupled Mock procedure based on time 
dependent version of the Poisson equation. The both schemes are simple and amenable 
to parallelization. 
The Galerkin finite element approach has been adopted to solve the Poisson equation 
on a finite element grid. The integration over the distorted brick finite elements during 
the discretization was carried out by a linear isoparametric mapping of each element 
into an unit cube. For the parallel matrix generation and assembly we use a node based 
partition of the grid and node based assembly approach in which the solution 
subdomain on each processor is scanned not element by element, but node by node. 
This leads to almost 100% efficiency when the number of nodes in the i and j directions 
are divisible by the corresponding numbers of processors [4].To solve the nonlinear 
system arising from the discretization of the Poisson equation we have adopted a Block 
Newton SOR scheme. The parallel performance of the method is illustrated in Figure 5. 
The discretization of the current continuity equation on the distorted brick finite 
element grid is more complicated. We are examining three possible approaches. The 
simplest one is to divide each distorted brick into six tetrahedral elements and to carry 
out a standard 3D control volume Gumrnel type of discretization. The second approach 
is to use a 3D analogue of the 2D Gummel like discretization developed for 
quadrilateral finite elements. Finally shape functions exponentially fitted to the 
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potential distribution could be used. A parallel implementation of the BiCGSTAB(2) 
method has been adopted for the current continuity equation. 

Figure 5:  Speed-up of the Block Figure 6: Electric field distribution in 
Newton SOR method for a cubic nxnxn aoctagonal cell IGBT at 600V anode 
problem on ari 8x8 array of transputers voltage 

Finally an exarnple of the electrical field distribution in a cellular IGBT at 600V anode 
voltage is illustrates in Fgure 6.  

5. Conclusions 

In this work we have presented our systematic approach to the design of a parallel finite 
element 3D power semiconductor device simulator. Our attempt was to build a portable 
and scalable parallel code which runs with high efficiency on variety of parallel 
platforms. To achieve this goal special measures were undertaken at each stage of the 
software development. 
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