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Abstract 

It is shown that the 1D hydrodynamic model of the fundamental transport equations 
in differential form can be transformed into an equivalent integral representation. The 
advantage of this procedure lies in the fact that integrals are generally easier to 
evaluate than the corresponding differential equations. The techn~que of the integral 
representations is applied to two examples. In case of a MOSFET, a closed form 
analytical expression for the carrier concentration and the velocity is obtained. In case 
the electric field is a step-function with a strong discontinuity, the influence of the 
diffusion effect as well as the mobility model on the steady state velocity overshoot is 
analysed without the need for a dedicated numerical solver. 

1. Introduction 

Numerical modeling of transport in semiconductor devices plays a crucial role in their 

development. As MOSFET's are scaled down to the 0.1 pm range, the channel length 

approaches the mean free path of charge carriers and effects as non-stationary and 

quantum transport become apparent. 

In conventional semiconductor devices, most quantum transport effects can be treated 

indirectly. For instance the effects of the rapidly varying crystal potential on electron 

transport can be modeled through the concepts of effective masses, energy gaps and the 

positively charged quasi-particle holes. On the macroscopic level, charge transport can 

then be modeled using the concepts of the semiclassical model. 

In 1969, Rees [I]  predicted an overshuot of the carrier mean velocity in semiconductors 

following rapid changes of the electric field by a self-consistent solution of the Boltzmann 

equation. In 1976, Shur (21 demonstrated that the full solution of the Boltzmann equation 

is not necessary. Using a coupled system of simplified particle-, momentum- and energy 

balance equations, called the hydrodynamic model, the basic physical mechanism 

underlying the velocity overshoot can be explained. 
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In principle, the Monte Carlo technique is superior to the solution of the moment 

equations, however, for the fundamental physical understanding of high field- and strong 

gradient effects, it is often satisfactory and preferable to go to analytic solutions. For 

instance, the saturation of carrier velocity in presence of constant high electric fields can 

be analytically assessed [3] using the three balance equations. It is shown that velocity 

saturation is caused by carrier heating (T,>300°K). However, when strong gradients in the 

field are present, ensemble (diffusion) effects make the local models (p(E)) inaccurate, and 

non-local models (p(Te) or p(E,)) prevail. 

The purpose of this report is to present the efficient technique of integral representations 

to calculate the physical quantities from the hydrodynamic model in a closed form 

expression. It is shown that the ID hydrodynamic model in differential form can be 

reformulated in a set of integral type equations. There is a distinct advantage in using 

them as an analysis tool for devices because they can easily be evaluated. The integral 

expressions are written in a general way independent of the particular p-model used. As 

such, it is a good basis to evaluate and compare different p-models. 

2. Model description 

The hydrodynamic model (HD) together with the IJoisson equation are well assessed 131. 

In principle, these four equations are coupled which makes it extremely difficult to solve 

them, even numerically. However, by assuming no generation-recombination, by 

simplifying correctly the energy balance equation (e.g.[4]) and by solving the Poisson 

equation independently of the HD-model [5,6), it is possible to calculate the carrier 

density (n), the velocity (v), the current density U) and the carrier temperature (T,). The 

potential (v) is calculated from the Poisson, 'n' from the particle balance, 'J' from the 

momentum balance and 'T,' from the energy balance equation. 

As a first example, the integral representation technique was applied within the drift- 

diffusion approach (Te=30O0K) in [7] to investigate the short channel effect. The details of 

the calculation can be found in [7] for a constant mobility (only dependent on the 

substrate concentration). In this report, we extend it to include high field effects (p(E)) 

with p(x) any local high field mobility model (e.g. the Caughey-Thomas model [9]). The 

first factor gives the equilibrium concentration while the second one acts as a modulation 

factor. Fig.1 shows n(x) for both constant and field dependent mobilities together with 

MEDIC1 simulations. The field dependent mobility makes that n(x) increases to 

compensate for the loss in velocity. The velocity can be calculated by plugging (1) into the 
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conventional Drift-Diffusion (DD) equation (i.e. Te=300"K) and compare the expression 

with J=-qn(x)v(x). This results in 

In a second example, we look at the problem of the step-like field (see insert of Fig.2) 

mentioned in [lo] including the energy balance equation to investigate the velocity 

overshoot. At first, the Slotboom [4] approximation of the energy balance equation for T, 
2 q  T t ( x )  = T, + -- 1 ~ ( u ) e x p [ ~ ] d u  
5 k  (3) 

is used with Tm =Te(L) and nm=n(L) and h=30 nm. The total set of integral equations can 

be straight-forwardly calculated as in [7]. We give here the result for 'n' 

7'1 J ~ P - ' ( U ) ~ X P [ -  ~ * f u ) l d u  n f x )  = n,, - e x p [ y * ( x ) l [ l -  ( 1  - + $ e x p [ - y 9 ( x ) ] )  
T J x )  

I 
p-'fu)exp[-yr*fulldu (4) 

with y * ( x )  = EE(U)&+ 

For this simplified case-study, all the integrals can be calculated analytically. The velocity 

is expressed in a similar way as (2). Fig.2 pictures T,(x) showing an increased temperature 

for higher fields. Fig.3 and 4 show the results for n(x) and v(x) respectively for both the 

present HD-model as well as for the conventional DD-model (Te=300"K). 

3. Discussion 

The carrier density 'n' (3) and the velocity 'v' within the HD-model depend on the type of 

mobility model used. Fig.3 and 4 show clearly the difference between local (only function 

of E) and non-local (function of T,) p-models. In case of a T, dependent mobility, a 

velocity overshoot is observed while in case of an E dependent p the opposite is true. 

Another example, the calculation of a one carrier metal-semiconductor rectifier using an 

integral representation of J (expression (34)) was done by Stratton [8]. 

The evaluations of the integrals, done with the software package Mathematica running on 

a Macintosh Quadra 650,. take about 20 s of time. 

4. Conclusions 

The 1D hydrodynamic model in differential form was transformed into an integral 

representation of the fundamental transport equations. The driving force for this 

procedure was the fact that integrals are generally easier to evaluate than the 

corresponding differential equations. The general applicability of the transport integrals 
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to any transport problem was pointed out. Two examples were discussed. The integral 
representations are widely applicable to classic textbook examples (e.g.[9]) as well as to 
realistic devices (e.g.[7]). 
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Fig.1 Comparison between MEDIC1 and integral model (1) Fig.2 Carrier temperature for the given steplike 
for a constant and a field dependent mobility electric field (insert) 
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