
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 6 

Edited by H. Ryssel, P. Pichler - September 1995 

Fast and Accurate Aerial Imaging Simulation 
for Layout Printability Optimization 

V. Axelrad 

Technology Modeling Assocates, 
Palo Alto, CA, USA 

1 Introduction 

Optical lithography has been a major force in the continuing reduction of feature size in VLSI. Push- 
ing the limits of lithography by using advanced lenses (high NA, in-lens filtering, etc.), light sources 
(annular, etc.) and mask designs (phase shift masks, optical proximity corrections, etc.) allowed to ex- 
tend its life span far beyond what was predicted only 10 years ago. 

Since lithographic image quality is a major limiting factor in VLSI processing, exact understanding 
of the printability of a certain layout is crucial to detect possible product quality problems. In certain 
cases it is possible to improve the image quality by optimizing the mask to compensate for non-local 
optical interaction effects (so-called optical proximity correction [I]). The ability to rapidly and accu- 
rately evaluate the expected image quality has therefore attained the status of considerable practical sig- 
nificance for industrial applications. 

This work discusses the application of highly efficient algorithms based on the Fast Fourier Transform 
to achieve aerial image calculations many orders of magnitude faster than conventional lithography sirn- 
ulators such as DEPICT [2] and SPLAT [3]. An algorithm is presented which compares the original 
mask image with the calculated aerial image to estimate printability. The algorithm has essentially linear 
dependence of CPU time on image size and linear dependence of memory on image size, therefore full- 
chip applications are feasible. The current implementation requires approximately 1 ~ ~ / y m '  of memory 
and 40 ms/ym2 CPU time on a SPARC Station 10. For a 5 0 0 ~ m  by 500ym image this translates into 
250MB and 3 hours. Utilization of redundancy in regular layouts and windowing techniques can sub- 
stantially reduce the requirements. 

The techniques described here have been previously developed in connection with closely related 
wave propagation problems in acoustics [4], [5] .  Applications of related techniques in lithography have 
also been reported [6] .  

Monochromatic wave propagation is governed by the well-known Helmholtz equation as well as ap- 
propriate boundary conditions: 

A q +  k 2 e  = 0, with k = O/C= 2n/h (1) 

A general solution to this equation can constructed as an integral over all plane waves with the same 
yavelength I / X  and amplitudes cp (k,, k,) traveling in all directions given by the wave vector 
k = (k,, ky. k r )  : 

i ( k ( +  kYu + ktz)  e (x. Y.  z) = J j Q (k,, ky )  . e . dk,  . dk,  (2) 
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Since the length of the wave vector k is given by equation (I), its z-direction component is the pro- 
jection of the k-vector upon the z-axis: 

k,  = f Jm (3) 

It is interesting to note that real values of k,  are only possible for k: + k: s k 2 .  This means that only 
spectral components up to a certain cut-off frequency given by the wavelength are propagated, higher- 
frequency components are represented by so-called evanescent modes with imaginary kl and are not 
present in the far field [4]. These modes are usually quite important in acoustics but of no significance 
in optics, where typical propagation distances through lenses are very much larger than the wavelength 
of light. 

A physical interpretation of the Ansatz in eq. (2) is shown in Figure 1.: as the length of the projection 
of k onto the x-y plane approaches the total length of the k-vector given by the wavelength h, its projec- 
tion upon the z-axis decreases until it reaches zero. At this point the plane wave i t veling in the x- 
direction, orthogonally to the optical axis z. Beyond this point, higher values of do not corre- 
spond to real values of k,  : 

Figure 1. Physical interpretation of the Fourier Integral approach. 

A two-dimensional inverse Fourier transform is recognized at the core of equation (2). We can there- 
fore write the Fourier transform of the field in aplane z as a combination of forward and backward prop- 
agating waves for the two signs in equation (2): 

ikcz -ikzz 
@ (k, ,  k y ; z )  = grwnrd ( k x ,  k,)  . e + @bock (k,, k,) . e 

The aerial imaging problem as well as certain problems in acoustics are described by the special case 
of forward propagation only, i.e. reflections are not taken into account. For this case we skip the super- 
script forward and obtain the solution as: 

ikz (2  - 1") 
@ (k,, k,;z)  = @ (k, ,  k,;zo) . e 

Equation (5) is of central importance to the algorithm. It means that the Fourier transform of the field 
in the plane z can be calculated by multiplying the Fourier transform of the field in another plane Z, by 
a linear space-invariant transfer function. In lithography, this transfer function can be used to model de- 
focus, since a defocused image can be constructed as a propagation problem from the focus plane. 

Lens effects are taken into account by another transfer function. A perfectly focused ideal lens creates 
a controlled phase delay for each plane wave direction causing the wave front to converge in the focus. 
The image thus created is the superposition of the original plane waves minus certain high spatial fre- 
quency components. The ideal lens can thus be described by an ideal low-pass filter. Its cutoff frequency 
is determined by the numerical aperture NA of the lens and the wavelength has  shown in Figure 2. due 
to the fact that the lens can only capture plane waves with k x / k Z  < x / f .  
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Lens aberration effects lead to an additional phase error, which renders the lens transfer function to: 

W k , .  k y )  

G~snr  = e , . < y. 0 otherwise (7) 

As a result, the calculation of the field in the image plane is reduced to the calculation of the field in 

NA = sin(atan(X1f)) 

axis 

Figure 2. Derivation of the lens transfer function. 

the mask plane and applying the two linear filters (6) and (7). The field in the mask plane given a single 
monochromatic light source is a product of a linear phase function times the mask transmittance and 
phase delay, which is spatially dependent for a phase-shift mask. The linear phase function is described 
by the complex exponential in the equation below: 

i (a,x + gv) 
(P ( x ,  y;O) = Mask ( x ,  y )  . e (8) 

The aerial image for a single monochromatic point source is thus given by: 

Fourier transforms are evaluated numerically using the Fast Fourier Transform algorithm with the 
number of operations given by O(MogN), with N being the total number of sampling points. An inter- 
esting and practically important aspect of evaluating eq. (9) is that while the low-pass nature of the lens 
transfer function ensures that the Fourier transform of the aerial image is band-limited with no spectral 
components for frequencies higher than 2nNA/l, the transform of the mask image is not band-limited. 
As a consequence, special care must be paid to calculating the forward transform in eq. (9) to keep alias- 
ing errors sufficiently small. 

Typical light sources in optical lithography are not coherent. To calculate the light intensity resulting 
from a larger light source we thus have to perform a numerical integration over the source. In other 
words the light source is represented by a number of point sources and the total light intensity is calcu- 
lated as a weighted sum of the light intensities produced by each point source. 

The total numerical effort involved is one FFT to calculate the transform of the mask image and a 
number of inverse transforms according to the discretization of the source. For different locations of the 
point source the Fourier Transform of the field in the mask plane is simply shifted by a distance In fre- 
quency domain according to the location of the point source. 

3 Extraction of Printability 

Calculating the aerial image numerically according to eq. (9) leaves us with a sampled image. Its sam- 
pling density is determined by the cut-off frequency 2xNA/h .  The image can be output in a standard 
format (GIF) for display. Since the aerial image is band-limited, trigonometric interpolation can be used 
to generate additional sampling points if desired. The sampled aerial image can be directly compared to 
the sampled mask information to determine the quality of the aerial image. Degradation of quality 1s 
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defined as image details which are likely not to print as desired. Two cases of quality loss can be distin- 
guished: 

i) image intensity is below a threshold value in an open mask region. 

ii) image intensity is above a threshold in a dark mask region. 

This comparison is carried out locally for each sampling point in the image. Following [8] and others 
we use a value of 0.3 for both thresholds, with 1 being the aerial image intensity at the center of a large 
open mask region 

4 Application 

A test mask layout of the size 15x15 Fm was chosen as an example of application. The layout is a 
combination of the test pattern reported in [7] and some additional mask features. Figure 3. (left) shows 
the aerial image calculated for 2=0.365pm, NA=0.55, A z 4 . 4 ~  and a single centered point light 
source. The line thickness is 0.35 Fm, which is very close to the theoretical resolution limit of 
0.5 . ~ / N A  - 0.33prn. As a consequence, loss of resolution is clearly visible. Figure 3. (right) displays the 
results of a printability analysis, where mask areas which are likely not to print as desired are marked in 
m y .  

Figure 3. Application example: Aerial image and Printability analysis of a test mask pattern. 

The author acknowledges helpful discussions on the subject of optical lithography with Dr. D. Ber- 
nard of TMA. 
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