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Abstract 

An efficient variational technique is applied to solve Schrijdinger's equai.ion 
in two dimensions. This model is then self-consistently used wi1.h a t,wo- 
dimensional Poissor~'~ equa1.ion solver to determine the electronic states inside 
low dimensional 11et.erosl.ruct.ure and quantum wire devices. Finally, the advan- 
tages and limitations of the present model are discussed. 

1. Introduction 

The existance of a one-dimensional elect.ron gas in low dimensional and quantum 
wire he te ros t r~c t~ure  devices requires an accurate and efficient model to  determine 
the  elect.ronic states and the carrier transport, properties in these devices. T h e  self- 
consistent, solut.ion of Poisson's and Schrodinger's equations is belived to be one of 
the most accurate met.hods which can be used 1.0 charact.erize the operation and to 
optimize the st.ruct.ure of these devices. 

A number of authors investigated different, models which are based on the finit.e dif- 
ference method t o  solve Poisson's and Schrodinger's equations self-consistently in bwo 
dimensions [I-31. T h e  accuracy and the comput.ationa1 efficiency of t.hese models 
st.rongly depend on mesh size and discretizat,ion techniques. An altmnative efficient. 
method to solve Schrodinger's equation in one dimension by using a variational tech- 
nique has been suggested [4-61. In the present, work, this method is extended to two 
dimensions to  determine the  electronic states in low dimensional and quantum wire 
I~et,erostructure devices. Finally, t.he advant.ages and limitations of this method are 
discussed. 

2. Model 

The  effectjive mass, two-dimensional Schrijdinger equation is given by 
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where V(x,y) means potential energy, E eigenenergy, Il, wave function corresponding 
t o  the eigenenergy E, m* effective mass, and h. Planck's constant. For a sem~conductor 
structure of length a and w ~ d t h  b, the  wave equation can be expanded as 
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The accuracy of this solution depends on the number of the expansion functions N 
and M. If N and M are infinite, the  obtained wave functions are identical to  the true 
ones. IIowever, finite N and M still lead to  very good accuracy. 

T h e  coefficients a,, are obtained by means of variational integrals whose stationary 
values correspond t o  the  true eigenvalues when the  true eigenfunctions are inserted 
in the integral. T h e  variational integral for E is given by 

The  condition that  (3) should be  sthtionary is satisfied if t,he first-order variation in 
E vanishes for an arbitrary firstborder variation S$ in 4. Applying this condition, 
a matrix equation [RIA = EA is obtained where A is a column vector with the  
elements a,, and R ,,,,, ,,,, = I1 + I2 where I1 and I2 are given by 
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Solving these equations, the subband energies and t,he corresponding wave functions 
are determined and then used t,o calculate t,he carrier distribution. Knowing the 
carrier distribution, t,he electrostatic potential is then calculated by solving Poisson's 
equation in two dimensions. Knowing the electrostatic pot,ential, the new potential 
energy function V(x,y) is calculated and the  effective V(x,y) is expressed as a linear 
combination of' its new and old values given by 

where w means relaxation constant which is introduced t,o obt,ain t.he solution safely. 
Schrodinger's equation is again solved to determine t,he new eigenenergies and the 
corresponding wave functions which are then used to recalculate the carrier distribu- 
tion. The  procedure is repeated until t,he initial and final values of V(x,y), within the  
same iteration, differ by less than a specified error. 

3. Numerical results and conlpu t,ational performance 

Schrodinger's and Poisson's equation are  solved self-consistently to  deterrr~ine the 
electronic states of the  structure shown in fig. 1. T h e  electronic states and hence (,he 
device operation are  strongly affected by the terminal voltages. The  applied potential 
by3 can be varied to  control the barrier height and the distance between the quant,um 
wires. The  potential energy and the carrier distribution for different bias are  displayed 
in figures 2 and 3, respectively. 
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From these results one can see that the present model is able to accurately determine 
the electronic states in two-dimensional structures. The method is able to take into 
account the variations in the effective mass and the boundary conditions in a more 
flexible way than previous models. Moreover, the accuracy does not depend on mesh 
size and discretization and is only affected by the number of expansion functions N 
and M. Using 20 expansion functions in each direction, 20-30 iterations are required 
to get the solution with a maximum error of 0.5 meV in V(x,y). The required CPU 
time for each iteration is about 80 seconds on a HP700 work station. 

4. Conclusions 

An efficient variational technique is investigated to solve Schri5dinger1s equation in 
2D and is applied with a 2D Poisson solver to determine the electronic states inside 
low-dimensional heterostructure devices. This method overcomes the limitations of 
previous finite-difference methods which are arising from mesh size and discretization. 
Moreover, the closed form of the wave functions makes the model more tractable to 
determine scattering rates and transport properties inside these devices. 
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Fig. 1 The simulated AlGaAs/GaAs heterostructure. 
Lg1=Lg5=36 nm, Lg2=Lg4=24 nm, Lg3=48 nm, dl=d2=d3=d4=18 nm 
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Fig. 2 The potential energy distribution [eV] 
(a) &1=&5=V,3=o.o v ,  &2=V,4=0.8 v 

(b) V,1=V,5=0.0 V, h3=0.3 V, K2=Vg4=0.8 V 

Fig. 3 The carrier concentration [10'7cm-3] 
(a) Vgl=Vg5=Vg3=0.O V, &2=Vg4=0.8 V 

(b) &1=45=O.O V, V,3=0.3 V, I&=h4=O.8 V 




