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Abstract 

In the past few years new methods have been proposed that can be seen as 
combinations of standard Krylov subspace methods, such as Bi-CG and GM- 
RES. Such hybrid schemes include CGS, BiCGSTAB, QMRS, TFQMR, and 
the nested GMRESR method. These methods have been successful in solving 
relevant sparse nonsymmetric linear systems, but there is still a need for further 
improvements. In this paper we will highlight some of the recent advancements 
in the search for effective iterative solvers. 

1. Bi-CGSTAB and variants 

The residual rk = b - Axk in the Bi-Conjugate Gradient method, when applied to 
Ax = b with start $0, can be written formally as Pk(A)ro, where Pk is a k-degree 
polynomial. These residuals are constructed with one operation with A and one with 
AT per iteration step. It was pointed out in [6] that with about the same amount of 
computational effort one can construct residuals of the form Fk = P:(A)ro, which is 
the basis for the CGS method. 
In [7] it was shown that by a similar approach as for CGS, one can construct methods 
for which r k  can be interpreted as rk = Pk(A)Qk(A)rO, in which Pk is the polynomial 
associated with BiCG and Qk can be selected free under the condition that Qk(0) = 1. 
In [7] it was suggested to construct Qk as the product of k linear factorr 1 :sjA, where 
wj was taken to minimize locally a residual. This approach leads to the BiCGSTAB 
method. One weak point in BiCGSTAB is that we get break-down if an wj is equal to 
zero. One may equally expect negative effects when wj is small. In fact, BiCGSTAB 
can be viewed as the combined effect of BiCG and GMRES(1) steps. As soon as the 
GMRES(1) part of the algorithm (nearly) stagnates, then the BiCG part in the next 
iteration step cannot (or only poorly) be constructed. 
Another dubious aspect of BiCGSTAB is that the factor Qk has only real roots by 
construction. It is well-known that optimal reduction polynomials for matrices with 
complex eigenvalues may have complex roots as well. 
This point of view was taken in [2] for the construction of the BiCGSTAB2 method. 
In the odd-numbered iteration steps the Q-polynomial is expanded by a linear factor, 
as in BiCGSTAB, but in the even-numbered steps this linear factor is discarded, and 
the Q-polynomial from the previous even-numbered step is expanded by a quadratic 
1 - w , ! ' ) ~  - w y ) ~ ~ .  It was anticipated that the introduction of quadratic factors in Q 
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might help to improve convergence for systems with complex eigenvalues, and, indeed, 
some improvement was observed in practical situations (see also [3]). 
However, our presentation suggests a possible weakness in the construction of BiCG- 
STAB2, namely in the odd-numbered steps the same problems may occur as in 
BiCGSTAB. Since the even-numbered steps rely on the results of the odd-numbered 
steps, this may equally lead to unnecessary break-downs or poor convergence. In [5] 
another and even simpler approach was taken to arrive at the desired even-numbered 
steps, without the necessity of the construction of the intermediate BiCGSTAB-type 
step in the odd-numbered steps. Hence, in this approach the polynomial Q is con- 
structed straight-away as a product of quadratic factors, without ever constructing 
a Linear factor. As a result the new method BiCGSTAB(2) leads only to significant 
residuals in the even-numbered steps and the odd-numbered steps do not lead neces- 
sarily to useful approximations. 
In fact, it is shown in [5] that the polynomial Q can also be constructed as the product 
of 1-degree factors, without the construction of the intermediate lower degree factors. 
The main idea is that 1 successive BiCG steps are carried out, where for the sake of 
an AT-free construction the already available part of Q is expanded by simple powers 
of A. This means that after the BICG part of the algorithm vectors from the Krylov 
subspace s, As, A2s, ..,,A's, with s = Pk(A)Qk-L(A)rO are available, and it is then rel- 
atively easy to minimize the residual over that particular Krylov subspace. In most 
cases BiCGSTAB(2) will already give nice results for problems where BiCGSTAB or 
BiCGSTAB2 may fail. 
Bi-CGSTAB(2) can be represented by the following algorithm: 

xo is an initial guess; ro = b - Axo; 
?o is an arbitrary vector, such that (r ,  Po) # 0, 

e.g., Po = r; 
po=1 ;u=O;a=O;w2=1 ;  
for i=O,2,4,6 ,... 

even BiCG step: 

odd BiCG step: 

PO = -W2Po 
PI = (Fo, Ti); 0 =  PI /PO; PO = PI 
u = r; - pu; 
v = Au 
7 = (v, Po); a = Pol-/; 
r = r; - av; 
S = Ar 
x = x, + au; 
PI = ( t o ,  s); P = apllpo; po = p1 
v = 3 - pv; 
w = Av 

t = As 
WI = (r, s); p = (s, s); v = (s, t); T = (t, t); 
wz = (r, t); r = 7 - uZ/p; w2 = (w2 - V W ~ / ~ ) / T ;  
W l  = (w1 - vw2)/p 
Xi+2 = I + WIT $ -k au  
T;+2 = r - W1S - w2t 
if ~ i + 2  accurate enough then quit 
u=u-w1v-w2w 

end 
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For more general BiCGSTAB(L) schemes see [5]. 
Another advantage of BiCGSTAB(2) over BiCGSTABP is in its efficiency. The BiCG- 
STAB(2) algorithm requires 14 vector updates, 9 innerproducts and 4 matrix vector 
products per full cycle. This has to be compared with a combined odd-numbered and 
even-numbered step in BiCGSTABP, which requires 22 vector updates, 11 innerprod- 
ucts, and 4 matrix vector products, and with two steps of BiCGSTAB which require 
4 matrix vector products, 8 innerproducts and 12 vector updates. The numbers for 
BiCGSTABP are based on an implementation described in [3]. 
Also with respect to memory requirements, BiCGSTAB(2) takes an intermediate 
position: it requires 2 n-vectors more than BiCGSTAB and 2 n-vectors less than 
BiCGSTAB2. 

2. GMRES in combination with BiCGSTAB 

In [8] it is shown how the GMRES-method [4] can be combined (or rather precondi- 
tioned) with other iterative schemes. The iteration steps of GMRES (or GCR) are 
called outer iteration steps, while the iteration steps of the preconditioning iterative 
method are referred to as inner iterations. The combined method is called GMRES*, 
where * stands for any given iterative scheme; in the case of GMRES as the inner 
iteration method, the combined scheme is called GMRESR in [a]. 
The GMRES* algorithm can be described by the following computational scheme: 

xo is an initial guess; ro = b - AXO; 
for i = 0 , 1 , 2 , 3  ,... 

Let dm) be the approximate solution of Az = ri 
obtained after m steps of an iterative method. 
c = A Z ( ~ )  (often available from the iterative method) 
for k = 0, ..., i - 1 

I2 = ( ~ k ,  C) 
C = C - (YCk 

Z(m) = z(") - (YUk 

~i = c / ( I c I I z ;  Ui = Z ( ~ ) / ~ ( C I I ~  
Xi+l = Xi + (ci ,  ri)ui 

= ri - (ci, vi)ci 
if xitl is accurate enough then quit 

end 

A sufficient condition to avoid break-down in this method (I1cllz = 0) is that the norm 
of the residual at the end of an inner iteration is smaller than the right-hand residual: 
( I~z(")-r ; l l~  < llri112. This can easily be controlled during the inner iteration process. 
If stagnation occurs, i.e. no progress at all is made in the inner iteration, then it is 
suggested in [B] to do one (or more) steps of the LSQR method, which guarantees a 
reduction (but this reduction is often only small). 
The idea behind this combined iteration scheme is that we explore parts of high- 
dimensional Krylov subspaces, hopefully localizing the same approximate solution 
that full GMRES would find over the entire subspace, but now at much lower com- 
~utational costs. The alternatives for the inner iteration could be either one cvcle 
bf GMRES(m), since then we have also locally an optimal method, or some oiher 
iteration scheme, like for instance BiCGSTAB. There are many situations in which 
we have slow convergence for GMRES(m). In such cases it does not seem wise to use 
this method. 
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On the other hand it mav also seem auestionable whether a method like BiCGSTAB 
should lead to success in the inner iteration. This method does not satisfy a useful 
global minimization property and large part of its effectiveness comes from the un- 
derlying BiCG algorithm, which is based on bi-orthogonality relations. 
In [I] it is proposed to prevent the outer search directions explicitly from being rein- 
vestigated again in the inner process. This is done by keeping the Krylov subspace 
that is build in the inner iteration orthogonal with respect to the Krylov basis vectors 
generated in the outer iteration. The procedure works as follows. 
In the outer iteration process the vectors co, ..., c;-1 build an orthogonal basis for the 
Krylov subspace. Let C; be the n by i matrix with columns g, ..., c;-1. Then the 
inner iteration process at outer iteration i is carried out with the operator A; instead 
of A, and Ai is defined as 

A; = ( I  - C;C?)A. (1) 

Of course, this orthogonalization approach for the inner iterations should only be 
considered in cases where we see too little residual reducing effect in the inner iteration 
process in comparison to the outer iterations of GMRES*. 
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