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Abstract 

Experimental and theoretical studies, on the decrease of the Richardson constant 
for the thermionic emission in Al-rich (z > 0.45) heterojunctions by more than 3 
orders of magnitude reveal that transport in the (100) crystallographic direction, 
across these interfaces is still an open research field. We present a phenomenologi- 
cal model based on envelope wavefunctions which involves two important transport 
mechanisms: zero-phonon transitions due to I' - X mixing and phonon-assisted 
transitions. The model makes use of tunneling calculations and transmission coef- 
ficients, evaluated for the above two mechanisms. These coefficients are different 
from the step function used in the classical theory. 

1. Introduction 

Thermionic current across single [I, 21 and double [3], Al-rich (x 2 0.45) heterojunctions 

has been measured by several experimental researchers both in steady state [4, 51 and 

in dynamic regimes 16, 71. Their data showed a dramatic decrease of the Richardson 

constant for thermionic emission (Fig. 1). Theoretical studies have been therefore applied 

in order to discover phenomena which are responsable for this decrease [8] - [Ill. This 

effect has been attributed to the transition of the alloy from a direct to indirect energy-gap 
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material as the A1 mole fraction (x) is increased. In this paper we provide a fully quantum- 

mechanical model for the thermionic current valid for every value of the Aluminum fraction 

z. Transport across the heterojunction is associated with the r minimum band edge if the 

AlAs fraction is less than 0.45. As x exceeds this value the AlGaAs energy gap becomes 

indirect and the l? electrons in GaAs are transmitted to AlGaAs via electronic states 

associated with the X minimum. 

2. The model 

The classical thermionic current expression can be derived from Bethe's model [12] 

where the AEb is the barrier height, kT the thermal energy and A* = 8A/cm2K2 fol- 

lowing Ref.[9]. However this model can not explain the decrease by more than 3 orders 

of magnitude in the indirect range of the GaAs/A1,Gal-,As interface and gives over- 

estimated currents. The importance of the completely quantum-mechanics multivalley 

transport is crucial for Al-rich heterojunctions. The r - X transition can occur by two 

different processes 181: the transfer via the two X minima (X,) aligned in the normal 

(100) direction with the r minimum (I' point at k=O) or the transfer through the four 

lateral X minima (X,, X,). In a previous paper [14], we described a complete model for 

thermionic emission in steady state as well as for transient response and we compare it 

with a large number of experimental results. In such a model the transmission coefficient 

must account for the I' - X transfer via both the zero-phonon and the phonon-assisted 

mechanisms. The former are elastic coherent processes in which I?- electrons (Fig. 2) e.g. 

from GaAs transfer to Al,Gal-,As via the two X minima (X,) aligned in the normal 

(100) direction with the I' minimum. The latter, via the four lateral X minima (X,, X,), 

require the assistance of electron-phonon scattering events in order to conserve momen- 

tum in the lateral direction. Using the thermally enhanced tunneling current expression 

given by Duke [13] 

J = &  em*kT 1 /t(E) . S(E)dE 
2+ti3 

where t ( E )  is the transmission coefficient and S(E)  is the supply function 
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we describe the transmission coefficient as [15] 

where Arx is for the two cases: 

zero-phonon transitions 

phonon-assisted transitions 

Arxs and Arx, are perfectly equivalent one another and have similar expressions [14]. 

The total Arx can be therefore written as 

3. Conclusions 

Our calculations clearly show that both zero-phonon and phonon-assisted contributions 

are needed in order to correctly evaluate the thermionic current and emission rates in the 

direct-indirect range of composition of the GaAs/AI,Gal-,As interface system. 
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Figure 1: Comparison among the effective Figure 2: Two valleys energy band diagram 
Richardson constant measured by Solomon for the GaAsIAlAs interface. The figure 
et al. plotted with (0) ,  by Rossmanith et al. shows the relative energy difference between 
plotted with (+), and our calculated data. I? and X valleys. 
The dot-dashed line is the theoretical GaAs 

Richarson Constant [9]. 




