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Abstract 

This paper presents the applica.tion of LiSS, the 2D multigrid solver for parabolic 
and elliptic differential equations developed by the GMD, to the simulation 
of diffusion processes in complex nonplanar structures. A domain-splitting 
method is presented. The behaviour of different multigrid cycles applied to 
rectangular and curvilinear grids of a trench structure is investigated. 

1. Introduction 

Multigrid methods have been applied successfully to pla.nar diffusion [I] and oxidation 
problems [2]. In our approach we used the general purpose multigrid solver LiSS [3], 
implemented a discretization scheme for the diffusion equations and applied it to 
several complex structures. 

The underlying equations for the NEQ diffusing species are 

with assumed local charge neutrality. The applied diffusion models are fully compat- 
ible with those of PROMIS [4]. The discretization of the equations has been done 
using a finite volume approach on a nine point stencil, the resulting set of nonlinear 
equations is solved by a Newton iteration scheme. 

In this approach the whole dolnail~ is divided into l~loclts. For each block a boundary- 
fitted logically rectangular grid is generated with a biharmonic generator also using a 
fast multigrid algorithm. This technique provides a high geometric flexibility. Thus 
it enables the solution of a wide range ol problerns and redt~ccs numerical problems 
due to distortions. 
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2. Multigrid Strategy 

Multigrid algorilhms have been developed to overcolne two disa.dva,ntages of iterative 
solvers such as SOR, first the so called h-tlependent convergence behaviour which 
results in slower convergence for finer grids and second the initially good reduction 
of both residual and error norms which becomes worse with an increasing number of 
iterations. 

A multigrid solver mainly consists of four parts: the smoothing, the restriction, the 
injection method, and finally the cycle type. The smoother makes the error a smooth 
function over the whole domain. Relaxation methods are used for this purpose, 
because they danlp high-frequent residual-"modes" very efficiently. By means of 
the restriction method the residuals are transferred from one level (or grid) to the 
next coarser level. The prolongation method defines how to transfer the residuals from 
one level to the next finer level. Finally the cycle type defines how many smoothing 

Figure 1: Multigrid Cycle-Types 

steps should be performed on each level and the sequence of the different levels as 
shown in Fig. 1. For example a V(udown,vup) cycle performs ud,,, smoothing steps 
before restricting to the next coarser level and u,,, smoothing steps after prolongation 
from the coarser level. The proper choice of these components has great impact to 
the efficiency of the algorithm. 

3. A Trench Problem 

A practical application is a "simple" trench a,s shown in Fig. 2 (boron background 
doping, arsenic source/drain implant with a 7* till a.ngle). In this case the domain is 

Figure 2: The trcl~cli geolliclry with a block structurctl grid ( a )  a~it l  a converltiorral 
grid (1)) ('rllc triallgles ikI.cx all efl'cct ol' 111(1 visui~lizatiori ol' 11orr-ort,l~op~.oduct grids) 
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split into three nea.rly rectangular b l ~ ~ l i s  where a grid is generated separately for each 
of them. In regions near to the bountla.ries, wl~ere high dopant gra.dients occur, the 
grids have been refined. from Fig. 'La Lhe a.dvantage of block-splitting, mentioned 
in section 1 (distortion), becomes obvious. This becomes even more importan1 when 
treating more conlplicated structures such as undercuts. 
The multigrid method used for this exainple consists of the following components. 
As smoother a Gauss-Seidel relaxation has been applied. Restriction was done by 
"full weighting", which uses the local average of the residuals on the finer level. The 
prolongation is a simple linear interpolation. The cycle is of V-type with different 
parameters vd,,, and v,,, respectively. The table of Fig. 3 shows the residual history, 
the runtimes and the convergence rates of various combinations of cycle parameters. 
Note that for higher values of vd,,, $ I/,, the convergence is faster, but it should be 
noted that the computational effort rises, too. As these results show, the multigrid- 
cylce talces about hd f  the computation time of a, single-grid cycle. The experiments 
showed that a V(2,l)-Cycle provides excellent results for a wide range of problems. 
For a small number of cycles the convergence rate of the single-grid cycle is in the same 

Cycle Time/s , , !~y! i ;  
2115 0.702 

V 1,2 0.126 
V 2,O 0.223 
V 2.1 1234 0.125 

number of iteration 

Figure 3: Residual reduction of a single-grid solver, multigrid solver with various 
cycles, their runtimes and their convergence rates 

range as the convergence rate of a multigrid cycle (see Fig. 3 for the first 3 iterations). 
After a few iterations the high frequent residual-modes have been smoothed and the 
remaining residual is dominated by low-frequent modes. For these low-frequent modes 
single-grid methods are very ineficient as Fig. 3 shows. I11 contrast to the single-grid 
method the multigrid-method does not show this effect. Although the computational 
effort of a multigrid cylce is a multiple (almost twice as much) of the effort a single- 
grid method (depending on the cycle-pa.ra.meters vd,,,,v,,), the multigrid method is 
significantly faster because of the consta.nt and fast convergence for all cycles. 
These tests have been performed with both types of grids shown in Fig. 2. The run- 
times for the same number of unlino\vns are a~~proximatcly t l ~ e  same for hot11 grid 
types. Agair~st the expectations i.he c~~rviIir~c!ar grid from Fig. 21) did not lead to 
convergence 01. a.ccuracy problems. Howcver, 1 . 1 1 ~  a.tlvantage (wit11 respect to compu- 
tation time) of the blockstructured grid is ol)vious since tile blocks can be handled in 
pa.rallel o ~ ~ l y  cxcl~a.nging informa.t.iol~ a.1 t l~cir  colnlnon I,oul~tla~.ies. 
T l ~ e  pl~ysical 1.os11l1.s of t l ~ e  cornputa1.io11 ~ 1 . c  prc:sc!l~tecl i n  Fig. I .  'l'hc tlifrusiol~ was 
performetl a.t 1000°C: for 20 ~ n i ~ ~ ~ ~ t c s .  'I'11c- rcsults for tlrc: one-tli~~~c:~~sio~ritl pwt, 011 
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Figure 4: Final dopant distribution in the trench 

the right side of the trench have been compared with a PROhIIS simulation giving 
excellent agreement. The differences bet\\.cen Lhc solutions were caused only by the 
different time step sizes, this means by the time discretization error. 

4. Conclusion 

This work has been an investiga.tion a.bout t,lie suitability of the general purpose 
solver LiSS for the simulation of dilTusion problems. The results obtained fit well 
with theorectical predictions. Convergence properties of the multigrid methods are 
very good, assuming that suitable mull.igrid components are in use. 
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