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Abstract 

We are interested in computing the solution of a system of coupled nonlin- 
ear PDE's which describes the electrical behaviour of semiconductor devices. 
This set of nonlinear equations is solved via a nonlinear version of the GMRES 
method [2]., This method consists in solving the linear system, that arises in 
Newton's method, by an iterative scheme, which constructs an orthonormal 
basis of a Krylov subspace, and minimizes the residual, over the current Krylov 
subspace. An advantage of this method over the classical ones is that the Jaco- 
bian is not stored and that little storage is required since the method restarts 
periodically whenever the size of the Krylov subspace reaches a maximum value 
fixed by the user. 

1. Introduction 

The classical steady state isothermal drift-diffusion conduction model in semicon- 
ductors is basically described by a set of three nonlinear PDE's (Poisson's equation, 
electron and hole continuity equations ) : 

The symbols have their usual meaning of the semiconductor device theory. c is 
the dielectric constant, cp the electrostatic potential, U U(cp, cp,, 9,) the net 
recombination-generation rate where cp, and cp, are the electrochemical potentials 
of electron and hole. The expression of the charge density p r p(cp, cp,, cp,) is : 
p = n -p-dop, where dop is the residual doping level, n = n(cp, 9,) and p c p(cp, 9,) 
are the electron and hole free carrier densities. The drift-diffusion current densities 
are : Jn = -q.n.p,.V(cp,) and Jp = -q.p.p,.V(cp,) where p, pn(cp, cp,) and 
pp -- pP(cp, pp)  are the electron and hole mobilities. 

The numerical solution of system (1) is carried out by discretlzing the equations on 
a mesh. We have implemented a Flux Conservative Box Method (FCBM) scheme 
161, which is a variant of the so called 'Box Methodn. This transforms the system 
of PDE's (1) into a nonlinear algebraic system. We consider that  the potentials cp, 
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cp, and cp, are the fundamental entities which characterize the device behaviour. So, 
this leads to a natural choice of unknowns cp, cp,, cp,, and the set of equations can be 
written as : 

with appropriate boundary conditions. The domain of definition 0 is a meshed 
bounded domain belonging to R' (1=1,2,3). The boundary of the domain, r = 80, is 
divided into classes, each of them corresponding to a given boundary condition type 
(ohmic contact, Schottky contact, insulating boundary...). 

For the sake of conciseness, the expressions of the coefficients in (2) are not reported. 
However, we can point out that, depending on the expressions used to describe the 
mobility law, the recombination-generation term (Shockley-Hall-Read, Auger, spon- 
taneous band to band, impact ionization ...) and the statistics (Maxwell-Boltzmann 
or Fermi-Dirac) of the free carrier densities, this general model is adequate for a wide 
range of devices including silicon and 111-V optoelectronic hetero-junction structures. 

2. Newton-GMRES algorithm 

We are interested in solving the nonlinear system (2) using a coupled method where 
the three unknowns cp, cp, and cp, are sought simultaneously. The system (2) can be 
written as a nonlinear mapping : 

F(@) = 0 where @ = (cp, cpn, cp,)' E R ~ ~ .  (3) 

where N stands for the number of nodes of the mesh. Let us denote by J (@)  the 
Jacobian matrix VF(@) computed at vector @. Recall that Newton's method for 
solving the nonlinear equation (3) can be described as follows : 
1. Choose an initial guess ; 
2. for k = 1,2,. . . do 

(i.) Solve the linear system : J(ak)bk = -F(ak) ; 
(ii.) Correct the approximate solution @k+l = ak + bk ; 

end for 

The Newton-GMRES method consists in solving the linear system J(ak)6k = -F(ak)  
in step (2.i.) using GMRES method [I, 2,3], which builds iteratively an orthonormal 
basis of a Krylov subspace, whose dimension m is very small compared to the size 
of the matrix J, and minimizes the residual over it. Unlike the methods based on 
Gaussian elimination, this method only requires to compute, at each iteration k, the 
action of the Jacobian J on a vector. This is accomplished without explicit storage 
of the Jacobian matrix, using the approximation : 

where a is a small quantity chosen according to [4]. Moreover, in order to improve 
the conditioning of the linear system (2.i.), a simple scaling by row is used. 
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3. Numerical results 

We have focused the study on two points which may have an impact on the quality 
of the method. The first one is the size m of the Krylov subspace, the second one is 
the parameter a which appears in approximation (4). 

Concerning the size m of the Krylov subspace, the basic method consists in 
choosing a value m and then restarting the GMRES loop periodically every 
m iterations. This strategy is, in general, not recommended because it does 
not take care of the excessive storage and its numerical instability effect on the 
algorithm. On the other hand, if m is small enough, the GMRES algorithm 
restarts more frequently, and this results in a high execution time. We are still 
working on this point. So far, we have implemented an adaptive method as 
suggested in [3] and which may be described in the following : let us denote by 
RESL the norm of the linear residual given by GMRES, and RESN the norm 
of the nonlinear residual (IF(@k)JI where @k stands for the current approximate 
solution. We fixe a maximum size m,,, and start with a small value, say 
mmin 5 5, the size m of the Krylov subspace is then updated at each restart 
according to the following conditions : 

if (RESN 5 1.5 * RESL) then m := min(m + k, m,,,) endif 
if (RESN > 5 * RESL) then m := max(m - k, m,;,) endif 

where k is a small integer,(k 5 5), by which the size m is either increased or 
decreased. Moreover, within the GMRES loop, we use two different criterions 
for the periodical restart : either the number of iterations has reached the max- 
imum size m,., of the krylov subspace or RESL < E where E is a precision 
parameter depending on the machine precision cma,h and the norm of the first 
non linear residual. Although the results obtained with this strategy are rather 
good, an improvement we are trying to find is a more general autoadaptive 
method which would adapt automatically the size m. 

a Concerning the parameter a in approximation (4), we have compared the choice 
suggested in 121, that is a = x I IF(@k)II (method A), with the adap- 
tive one (method B) which has been successfully used in the context of CFD 
[4]. Both of the methods use the adaptive choice for the size m of the Krylov 
subspace. The cost of computing a is equivalent to the cost of two residual 
evaluations. Consequently, the cost is minor when compared to the overall 
computation. The method could be improved because it seems not necessary 
to re-evaluate a at each restart but rather every 5 or 10 restarts. 

a The simulations have been performed, using the coupled method implemented in 
the 3D version of the simulator CARMES [5]. Two devices have been simulated. 
The first one is a classical Silicon pn junction with a 30 x 30 x 30 rectangular 
mesh. Figure 1 shows the comparison between the static and the adaptive choice 
of the size of the Krylov subspace rn. These results have been obtained under 
5 Volts reverse bias (the size of the Jacobian matrix J is 3N = 81000). We 
can observe that the adaptive method needs less iterations. The second device 
is a Buried Heterostructure (BH) used in a Semiconductor Optical Amplifier 
(SOA). It is mainly composed of a GaInAsP (p doped) active layer inserted 
into an InP (n doped) buffer layer and an InP (p doped) protection layer. The 
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simulations are performed with a 20 x 25 x 30 rectangular mesh (the size of the 
Jacobian matrix is 3N = 45000), under .95 Volt direct bias. Figure 2 shows the 
comparison between method A and method B. Here again, the latter one needs 
less iterations than the former one. 

4. Conclusion 

We have investigated a Newton-GMRES method for solving nonlinear equations com- 
ing from semiconductor device simulation. We have shown that the method gives 
reasonable results if some of the parameters are chosen adequately. There are two 
important points left to be done. The first one concerns a further study about the 
adaptive choice of the Krylov subspace, and the second one concerns the finding of a 
preconditioner of the Jacobian matrix which would take into account some physical 
considerations. 

Figure 2 
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