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Abstract 

Results of simulations are presented that make use of a recently proposed 
model for non-ided ohmic contacts. The model considers both tunneling and 
thermionic emission currents across the contact. The nonlinearity of the con- 
tact resistance is discussed. The two-dimensional current distribution under the 
contact arising from doping variations is investigated. It is shown that slight 
doping variations can result in strong current inhomogenities. 

1. Introduction 

In [I], [2], a model of non-ideal metal-semiconductor contacts for semiconductor device 
simulation has been proposed. The model considers both tunneling and thermionic 
emission currents across the contact and allows the simulation of contacts on very low 
to very highly doped material with a single model. In this paper, we investigate the 
properties of the model for the case of nearly-ohmic contacts by applying it in actual 
device simulations. 

The paper is organized as follows. In section 2, some details of the implementation are 
given. In section 3, we compute the current-voltage characteristics of the contact for 
various doping concentrations and compare them to the usual model of ideal contacts. 
The nonlinearity of the contact resistance is discussed. In section 4, we investigate the 
current distribution under the contact in a two-dimensional simulation. In particular, 
the current distributions at an ideal and a non-ideal contact are compared. Finally, 
we investigate the change of the current distribution with respect to a slight variation 
of the doping concentration under the contact. 

2. Implementation of the contact model 

We implemented a simplified version of the model for nearly ohmic contacts into the 
device simulator PARDESIM [3], [4]. The model assumptions are 1) charge neutrality 
on the boundary, 2) tunneling and thermionic emission current of the majority carri- 
ers according to [I], and 3) Fermi level continuity across the contact for the minority 
carriers [5]. These assumptions are used as boundary conditions for the Poisson equa- 
tion and for the electron and hole continuity equations, respectively. Assumption l )  
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corresponds to the special case that the tunneling length comprises the total depletion 
region of the interface [2]. This is only the case if the depletion region is very thin, 
i.e. if the doping is high. Thus, the model is valid for ohmic contacts. Assumption 
2) leads to a finite quasi-Fermi energy step across the contact, and thus to a nonzero 
specific contact resistance [I]. The well-known ideal contact model differs only in 
assumption 2) by assuming instead continuous Fermi energy across the contact also 
for the majority carriers. 

Simulations have been carried out for A1 contacts on n-Si (0.7 eV barrier height). 
Since the semiconductor is mostly in degeneration in the considered doping range, 
we used for the simulations a simplified version of the heavy-doping transport model 
as described in [6]. Briefly, this model accounts for heavy-doping effects by using a 
doping-dependent apparent bandgap narrowing. 

3. Nonlinearity of the contact resistance 

First, we tested the model with a one-dimensional simulation of a resistor, consisting 
of a bar of homogeneous n-semiconductor with length L = 6pm. The resistor has an 
ideal ohmic contact at x = L, and a non-ideal contact at x = 0 [4]. Fig. 1 shows 
the current-voltage relationship of the resistor for various doping concentrations. 

voltage [V] voltage [V] 
Figure 1: Figure 2: 

IV characteristics (large scale) IV characteristics (small scale) 

We see a linear behaviour for a doping of lo2' cmP3. At lower doping concentrations 
the curves become nonlinear, thus indicating the non-ideal behaviour of the contact in 
these cases. The physical reason is that the tunneling probability is strongly sensitive 
to variations of the electron Fermi level drop across the contact [I]. We found that 
the applied bias dropped almost entirely across the non-ideal contact, indicating that 
its resistance is much larger than that of the semiconductor bulk. 

For comparison, the line for a 10'' cm-3 doped resistor with two ideal ohmic contacts 
is displayed in Fig. 1, too. We note large differences between the devices with the 
ideal and non-ideal contacts. The slope of the line in the ideal contact case is inversely 
proportional to the resistance of the semiconductor bulk, since the ideal contact has 
zero resistance. 

Fig. 2 shows the same plot as Fig. 1, but on a much smaller current density scale. It 
is interesting to note that the character of the curves depends on the scale. While 
the 5 .  10'9cm-3 curve in Fig. 1 appears nonlinear, it looks like a nearly ideal contact 
in Fig. 2. The 2 . lo1' cm-3 curve in Fig. 1 shows a rectifying behaviour, while on 
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the smaller scale it looks like a nonlinear resistor. From this observation we conclude 
that the ideal or non-ideal appearance of a contact depends on the magnitude of the 
current density flowing through the contact, which might not be determined by the 
contact alone but also by depletion regions etc. inside the device. Thus it depends 
on the particular operating conditions if the use of an ideal contact model, a current 
independent contact resistance, or the non-ideal model is appropriate. 

Figure 3: y-component of electron current density 

4. Current distribution under the contact 

In a second example, we investigated the current density distribution obtained in 
a two-dimensional simulation [4]. The simulated device was a 5pm x 3pm piece of 
silicon with two planar contacts of lpm length and a constant doping of 1019cm-3. 
Fig. 3 shows the distribution of the y-component of the electron current density a t  a 
bias of 0.2 V. The non-ideal contact (x = 1..2pm) has a smooth current distribution, 
while the ideal contact model at x = 3..4pm exhibits sharp current density peaks 
at the ends of the contact. The reason for the latter effect is that the ideal contact 
model demands constant Fermi levels and potential and thus effectively "shortcutsn 
the semiconductor. Hence, the electrons leave the metal predominantly at the ends of 
the contact. The contact resistance of the non-ideal contact, on the contrary, ensures 
a uniform distribution of the current density. We found that the uniform distribution 
in this example is nearly unaffected by the magnitude of the bias or the electric 
field near the contact. Thus, the use of a position independent contact resistance is 
justified as long as the doping under the contact does not change. 

In order to investigate the influence of doping variations on the contact resistance, 
we introduced a slight increase of the doping concentration in the region near the 
non-ideal contact. Fig. 4 shows that the doping in the contact plane now varies from 
4. 1019cm-3 to x 2  1019cm-3. In Fig. 5 we can see that this slight doping variation 
causes a significant reduction of the current density under that portion of the contact 
where the doping is lower. While the doping drops by a factor of two, the current 
density drops by a factor of 10. In other words, the effective contact size reduces to 
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ca. 75% of the original metallization size. As apparent from Fig. 1, this effect is due 
to the drastic sensitivity of the contact resistance to the doping concentration. Thus, 
the slight doping variation of Fig. 4 leads to a strong inhomogenity of the specific 
contact resistance, and a correspondingly inhomogeneous current distribution. A 
simple estimation of the contact current density from the total current and the contact 
area might underestimate the peak current density in such cases. For simulations 
where the current distribution near the contacts is important, it can be expected that 
the non-ideal model would give more satisfactory results. 
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Normal current density under contact 
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