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Abstract 

For the numerical simulation of semiconductor devices driven by a periodic 
voltage a new numerical approach is presented. The method is based on a 
temporal Fourier expansion to solve time-dependent nonlinear partial differen- 
tial equations like the Drift-Diffusion Model. Disadvantages and problems of 
conventionally used time discretizations are avoided. To achieve high-accuracy 
results an interval based error-analysis is presented. 

1. Introduction 

T h e  simulation of semiconductor devices with a periodic driven voltage requires 
the numerical solution of nonlinear partial differential equations. An often used 
model is the  Drift-Diffusion Model (DDM). Typical applications are t h e  simulation of 
IMPATT-,  PIN- or BARITT-diodes, [I]. T h e  usual way t o  approximate t ime deriva- 
tives is t h e  discretization via Finite Differences. To  obtain the  periodic solution a 
decoupled one-step iteration is necessary, (21. Besides of many required iteration cy- 
cles all known problems of Finite Difference Methods like low-order discretization a re  
occuring. In order to  avoid these problems a new method, the so-called t-Fourier 
Method ( t F M ) ,  is presented here. Most theoretical aspects are  common t o  the  2- 
Fourier Method [3]. With  the formulated t F M  all usual semiconductor equations 
describing t ime a n d  space dependent transport phenomena of electrons and  holes 
can be  treatled. For simplicity all subsequent details a re  performed for the  DDM. 
For derivation, parameter selection and boundary values see [4]. T h e  DDM can be  
written in the  following manner 

involving Poisson equation a n d  continuity equations for electrons n and holes p. T h e  
electrostatic pot,ential ul  = y is determined a t  the contacts by the applied sinusoidal 
voltage U ( t )  = Uo + Ul sin(wt). 
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2. t-Fourier Method 

The method presented is based on a temporal Fourier expansion of the solution vector 

This approach fullfills the periodicity condition automatically. Inserting (2) into the 
semiconductor equations (1) and applying the inner product < ., . > of the under- 
lying Sobolev-space the equations are transformed to an infinite system of nonlinear 
differential equations for the space dependent Fourier coefficients Ck. This can easily 
be seen by utilizing the main features of spectral series like linearity, convolution, and 
transformation of time-derivatives into algebraic terms. The Fourier Spectrum of the 
nonlinear transcendental functions p,,,, G, R can be calculated in t-space. 

Boundary conditions have to be transformed analogously. Thus, we obtain the 
Fourier-Galerkin coefficients Fk :=< ~ , e - ' ~ " '  >, , k = -03, . . . ,m  of the basic oper- 
ator F. A solution vector (Ck)k=-OO,...,oo now has to fullfill the following equations: 

3. Numerical Solution Procedure 

For numerical treatment the infinite sum (2) is approximated by the M-th partial 
Fourier sum ( k  = -M, ..., M).  Transcendental functions are calculated in t-space 
transformed with efficient FFT-techniques. Hence, one ends up solving a finite non- 
linear system of differential equations. They can be discretized with well-known 
techniques like the Finite Element, Finite Difference or ?-Fourier Method. This leads 
to an algebraic nonlinear system GM which is solvable with an efficient Newton algo- 
rithm: 

The Jacobian matrix dGM/du depends on the ?-discretization used. The examples 
illustrated below were calculated with a classical Scharfetter-Gurnrnel scheme which 
leads to a tridiagonal block matrix. 

4. Examples 

Some results for a Si-TMPATT diode are presented. The diode has a ND+NDNANi 
geometry (double drift) with No = 1017 l/cm"300 nm), NA = 1.25. 1017 l/cm3 
(300nm). The contacts were chosen to NA = N;f = 1018 l/cm3. For simplicity exter- 
nal circuits are neglected and the DDM is used in an one-dimensional formulation. 
Fig.1-3 show the electric field E and the electron and hole concentration n and p a t  the 
4 significant time-points t l  = O,tz = T/4,t3 = T/2, t4  = 3T/4,T = 2nlw. The pa- 
rameters were chosen to Uo = 24V, Ul = 10V, f = 1/T  = GOGHz, JDc = 28.4kA/crn2. 
The solid line represents the solution with iM = 32, dots M = 10. The results illus- 
trate the very fast convergency of the Fourier coefficients. The tFM is unconditionally 
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stable. The Newton algorithm requires only few iterations and no damping technique. 
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Figure 1: Electric Field, E ( x ,  t j )  

Figure 2: Electrons n ( x ,  ti) 

Figure 3: Holes ~ ( x ,  t j )  

5. Interval based Error Control 

The main advantage of Spectral Methods is the theoretical representation of the 
solution up to a very high accuracy. In the case of the semiconductor equations 
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this attribute is impaired by rounding and transformation error when treating the 
transcendental functions. An easy way to control these errors is the usage of Intervals 
[5]. During the application of the tFM equations of the form 

with known ak and f have to be solved. The coefficients f k  are calculated numerically 
via FFT-techniques. Rounding and transformation error can lead to unpredictable 
results. With XSC-Computer languages, e.g. [6], an  error-control with intervals can 
easily be implemented. A practicable formula for a first error control is given with 

M 

R := f ([0, TI) - C ~ e - i k w [ o ~ T I  
k=-M 

The error of the numerically calculated Fourier coefficients f7; and the exact ones lie 
between bounds given by R for every k. For more sophisticated interval methods 
the reader is referred to later papers. A future step in error control will also be the 
calculation of verified results of the nonlinear algebraic system (3) with an Interval- 
Newton algorithm to prove the uniqueness and existence of a solution within narrow 
interval bounds, [7]. 

6. Conclusion 

It has been proven that solving the time-periodic DDM with the tFM has many 
advantages in contrast to conventionally used time-discretizations. In addition to 
the  efficient Newton algorithm the main feature is the avoidance of instabilities and 
diffusion problems. The most impressive result is the very low number of Fourier 
coefficients required to represent the solution with sufficient accuracy. With the posi- 
bilities of interval computation in error analysis Spectral Methods can lead to a new 
dimension in accuracy. Hence, the tFM is also an interesting alternative in the tran- 
sient case. 
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