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Abstract 

We report on the implementation and first numerical results of a new analytical 
model of the metal-semiconductor contact in a drift-diffusion device simulator. 
The model covers the entire range from Schottky to Ohmic contacts and fits 
well with experimental I(V)-characteristics of intermediately doped silicon. 

1. Introduction 

Usually, in device simulation the physical system "metal-semiconductor (MS) interface" 
is treated in form of idealized boundary conditions. Neutrality and equilibrium are as- 
sumed for Ohmic contacts and thermionic emission for rectifying (Schottky) contacts. A 
model of the non-ideal contact is not only of general interest, but also desirable for cer- 
tain applications, e.g. the combined Schottky-pn-structure in power diodes (MPS diodes) 
or the Schottky Injection Field Effect Transistor (SINFET). Obviously, such a model can- 
not reflect the entire complicated physics involving barrier tunneling, inelastic scattering, 
recombination, trapping and trap-assisted tunneling, potential fluctuations, lateral barrier 
height fluctuations, roughness, band-state mixing, carrier heating, image forces, and some 
other effects. Since barrier tunneling is commonly accepted to produce Ohmic behavior, 
the concept of thermionic field emission (TFE) is successful in explaining the transition 
from Schottky to Ohmic contacts as the doping level is increased. Schroeder [l] used a 
simplified version of the WKB transmittance of a parabolic barrier (neglecting quantum 
reflection) and derived an analytical expression of the emission current j, suitable for a 
boundary condition in device simulation. We believe that because of the importance of 
barrier tunneling for the properties of MS contacts with arbitrary doping the substitution 
of the WKB approximation by a better approach should be a reasonable improvement, de- 
spite the mentioned variety of other physical effects. Details of the new model including the 
lengthy formulas are published elsewhere [2]. Here we concentrate on the implementation 
of the model in a general drift-diffusion simulator and report on first numerical results. The 
essentials of the model are outlined in the following section. 

2. Theory 

Idealizing assumptions are: parabolic potential barrier (constant doping in the barrier re- 
gion, Schottky approximation, no image effect, no interfacial layer, etc.), 1D approximation 
for the transmission probability, and unique effective mass in the semiconductor. 
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The WKB approximation is by-passed by interpolating analytically between the asymptotic 
forms of the eigenfunctions (parabolic cylinder functions) by means of Airy functions. The 
maximum error at the classical turning points, where the WKB solutions diverge, is shown 
to be less than 0.2%. To enable analytical integration the maximum peak of the Airy 
function is fitted to a Gaussian with an universal attenuation parameter for all doping con- 
centrations. In that way good agreement is achieved with the true transmission probability 
up to an energy Em,, well above the maximum of the barrier. For still higher energies the 
simpler WKB approximation is sufficient to account for quantum reflection there. A fully 
analytical model is derived if the arguments of the Gaussians are developed with respect to 
the energy at  the marimum of the spectral current density. This maximum is solution of a 
transcendental equatio. and may be approximated by an expression similar to that given 
by Crowell and Rideout [3]. To avoid expensive numerical integration including Fermi in- 
tegrals, we use Boltzmann statistics above and total degeneracy below the Fermi energy, 
respectively. The final expression then contains error functions as the most complicated 
ingredients. 

Fig. 1 compares j(V)-characteristics of the MS contact calculated with the new analytical 
model against the results of an "exact" reference model, where the correct transmission 
probability in terms of parabolic cylinder functions (Conley et al. [4]) was used in a nu- 
merical integration (not changing the statistics model). Curves labeled "Schroeder" are the 
correspondinn characteristics, if his simplified WKB transmittance [I] is used. 
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Figure 1: Calculated j(V)-characteristics of an A1 on n-Si contact with barrier height 
= 0.7 eV and m, = 0.258 mo for different models. 

3. Implementation 

The implementation of the above model in a drift-diffusion device simulator requires the 
definition of boundary conditions for the electrostatic potential tjj and the quasi Fermi 
potentials (on and (op .  For feasibility we assume equilibrium, i.e. (on = ( o p  =: (o. This 
variable is determined by numerically balancing the drift-diffusion current and the T F E  
current as determined by the analytical model. 
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Figure 2: Schematic band diagram 

The simplifying assumption of equilibrium is caused by the problem that the TFE current 
depends on the variable VaW, the potential drop over the barrier, which is a non-local 
variable and hence not available in a device simulator. This is why we approximate it by 
Vam = @, - @, = Vmtaa - (o (see Fig. 2). 

To be able to derive the boundary condition for ?1, we have to identify the position in the 
barrier until which the current is determined by the TFE current and from which it can be 
treated as a pure drift-diffusion current. In Fig. 2 this point is shown at the depth XT under 
the contact. It can be determined from the TFE model by the condition that tunneling 
remains negligible at lower energies. From the parabolic barrier assumption we can then 
derive a corresponding energy WT and using this arrive at the following formula for $ at the 
point XT: $ = (o+@&+(WT-WD)/q, @& is the built-in potentid. Unfortunately, WT - WD 
depends again on VaW and is hence not available. Using the same approximation as above 
we arrive at: $ = (o + @bi + (WT - w ~ ) ~ ~ / q ,  WT,eq and WD,eq are the equilibrium vdues of 
the energies WT and WD shown in Fig. 2. Note, that the expression for $ reduces to the 
common boundary conditions in the two extreme cases of a pure Ohmic (WT.eq = 
and the Schottky case ( W T , ~ ~  = 0). 

4. Examples 

Fig. 3 compares simulation results with the drift-diffusion simulator SIMUL [Fj] against ex- 
perimental data of a Kelvin structure (Ti on n-Si with (100)-orientation, barrier height - 
0.50 eV, ND = (1.8 - 2.2) x 1018 ~ m - ~ ) .  Such a contact represents an intermediate case be- 
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Figure 3: Comparison of simulations with a measured I(V)-characteristic of Ti/n-Si 
with ND = (1.8 - 2.2) x 1 0 l ~ c m - ~  and an  area of 3.4 x 1 0 - ~ c r n ~  (dots). Simulated 
curves are based on the parameter set: m, = 0.19m0, @ B  = 0.50eV1 m~ = mo, and 
E F , ~  = 11.7eV. 
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tween Ohmic and Schottky, and the data are not influenced by an unknown bulk resistance. 
The reverse bias branch can be well fitted with the transverse effective mass mt = 0.19 mo 
((100)-orientation!) for doping concentrations in the range No = (1.8 - 1.9) x 1018 ~ m - ~ .  

Note that no ideality factor was used to remove the deviations at low reverse and forward 
biases, which are presumably caused by recombination inside the barrier region. 

As another example we show the behavior of a nin structure (e.g. the Schottky part of 
a combined Schottky-pn-structure) with a variation of the surface doping concentration. 
The structure under consideration is 10pm long with a bulk value of 1014 ~ m - ~ .  The one 
contact is Ohmic with a surface concentration of N D  = lo2' ~ r n - ~  and the other is varied 
in steps from 10ls cmT3 to 2 x 1019 cmP3 as shown in Fig. 4a. 

The simulated j(V)-characteristics in Fig. 4b show the transition from a Schottky diode 
like behavior to a resistive behavior. 

Figure 4: nin structures for varying surface doping. a) Doping versus spatial coordi- 
nate for the varying well. b) j(V)-characteristics. 
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