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Abstract 

A simulation method for electron wave propagation in a quantum directional 
coupler is presented. As an example of the method, the switching behavior of 
quantum directional coupler is simulated. 

1. Introduction 

Recent advances in technology have enabled the fabrication of nano-scale devices, 
whose quantum effects can be put to use. The Quantum Directional Coupler (QDC) 
is an example of such a device which has been extensively investigated in the last three 
years [I-31. A cross-section of a possible QDC structure is shown in Fig. 1. Space 
charge layers under the Schottky contacts create the required potential wells to confine 
the electrons in x-direction. The heterojunction between the undoped Alo.~Gao,7As 
and GaAs layers confines the electrons in the y-direction. This creates two parallel 
quantum wires of two-dimensional electron gas (2DEG) with very high mobility at low 
temperature. If the separation between the wires is small enough, then the electrons 
propagating in these wires will interact with each other. For example, if initially the 
electron wave is in one wire, then after traveling some distance it will be transferred 
into the second wire. This can be viewed as the symmetric and antisymmetric modes 
beating with each other, causing the electrons to slosh between the two wires. The 
transfer length depends on the barrier height and upon the separation between the 
two wires. Therefore, by changing the voltages, one can switch the electron current 
from one wire to the other. 

In previous papers [l-31, the two-dimensional Schrodinger's and Poisson's equations 
in the QDC structure were solved to calculate the electron eigenfunctions, and con- 
clusions about the characteristics of the QDC were made. The purpose of this paper 
is to demonstrate the applicability of the beam propagation method (BPM), that has 
been used to simulate optical waveguides (41, to QDC simulation. 

2. Physical model 

To apply BPM one should assume that there is a preferred direction of wave propa- 
gation, along which the changes of electron wave-function are slow. In a QDC this is 

- 



494 A. D. Sadovnikov et al.: Preliminary Results of Quantum Directional Coupler Simulation 

the z-direction. We shall also assume that the QDC supports only two eigenfunctions: 
first symmetric and first antisymmetric modes [2], with nearly equal wave numbers 
k: and k: along the z-direction. Therefore the envelope of the electron wavefunction 
!€' can be described as [2] 

where $" and $" are z-independent wave functions, corresponding to the lowest sym- 
metric and asymmetric modes, and $ = $" + $aexp[-j(k: - k:)z]. If k: GZ k: = kz 
then $ varies slow along the z-axis. Using this property of $ we can use a paraxial 
approximation, I k: [>>I d2$/dz2 1, to simplify Schrodinger's equation. In this study 
we shall assume that the electrons in the quantum wells are fully confined in the 
y-direction. Therefore it is sufficient to solve Schodinger's equation in 2D instead 
of in 3D. Substituting (1) into Schrodinger's equation, one can derive the following 
reduced equation for $ [5]: 

Here m* is the effective mass of electrons in GaAs, E is the electron energy, Ec = 
-qV + E,/2 is the edge of the conduction band, V is the electrostatic potential, and 
E, is the semiconductor bandgap. 

3. Numerical method 

The simulation method is as follows: 

1. For given gate voltages and semiconductor layer parameters we solve Poisson's 
equation 

V . (E~EOVV) = -q(p - n + Nd+ - N,-), (3) 
where the hole and electron concentrations p and n are calculated using a constant 
Fermi level approximation. This equation is solved for the "classical" case, where we 
neglect electrons in the localized states. After linearization and discretization on a 
non-uniform rectangular grid, we solve a system of linear algebraic equations with a 
five-diagonal symmetric matrix using the Incomplete Cholesky-Conjugate Gradient 
method. 

2. For a given electron energy E and an initial electron wavefunction, we calculate 
k, using the variational principle (as suggested in [6] for optical wave-guides): 

3. Next we solve (2) on the uniform x-grid, for one step in the z-direction starting 
from z = 0. We have compared several different first- and second-order integration 
methods, and have found that the Crank-Nicholson scheme gives the the best results. 

4. If the contact geometry changes with z, we repeat steps 1-3 until we reach the 
end of the simulation region. For the particular QDC considered later, we need only 
repeat the third step. 

All calculations were done on IBM PC AT1486 computer. The typical calculation 
time was 2 to 5 minutes for 40 x 70 spatial grid nodes in Poisson's equation, 200 
nodes, and 100 to 200 z-steps in Schrodinger's equation. 
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4. Results and discussion 

A QDC structure similar to the one investigated in [3] is considered in our simulation 
(see Fig. 1). The Schottky barrier height is 1.0 eV, and the lattice temperature T = 
4.2 K. The length of the structure is 100 nm, which can be regarded as a reasonable 
value for ballistic electron motion length for such temperature 121. A low voltage 
VG1 = VG5 = 0.2 V is applied to the gates G1 and G5, creating deep space charge 
regions which prevent electrons from moving out of the simulation region. A high 
voltage VG2 = VG4 = 0.75 V is applied to the gates G2 and G4, creating two quantum 
wires underneath them. The potential on gate G3 is varied to control the barrier 
height and the distance between these wires. To estimate the currents flowing in the 
wires we calculate the quantity k, J $$*dx, where the integral is taken over the left 
or right sides with respect to the QDC centerline. 

The initial $(x) distribution simulates the injection of electrons into the left wire. 
From Fig. 2 we see that changing vG3 from 0 to 0.3 V can easily change the poten- 
tial barrier between the wires from quite a large value to  almost zero. This results 
in a different transmission probability, and in turn changes the length required for 
electrons to penetrate from the left wire to the right one (see Fig. 3). Calculating 
the currents for the given $DC dimension in z-direction for different VG3 values, we 
obtain current-voltage characteristics (see Fig. 4). A few remarks about the method 
in general and these results are appropriate. 

1. The paraxialapproximation is not important for our method. In fact, one can derive 
an equation slightly more complicated than (2) using a wide angle approximation. 
However we have found that all these approximations give only small differences in 
the final results (at least for our particular device). 

2. Calculations made in [l] show that the occupancy levels of highest eigenstates 
decrease drastically with decreasing temperature. Therefore we suppose that for very 
low temperatures, which are required to obtain the reasonable values of collision-free 
electron length, our method will be accurate. 

3. The results of Fig. 3 and 4 depend on the chosen value of electron energy and initial 
$(x) distribution, which have been chosen arbitrarily in the present study. There- 
fore one should be cautious about drawing specific conclusions from those figures, 
but rather consider them only as an illustration of the possibilities of the proposed 
simulation method. 

4. Future QDC structures will be non-uniform in z-direction [2,3] as our investigated 
QDC is. Moreover, t o  account for impurity de-ionization, electron concentration on 
the localized states, and other Fermi level related effects, one should solve a three- 
dimensional Schrodinger's equation instead of the two-dimensional one (2). However 
with suitable modifications, our method can handle these changes, and we hope that 
it still will be faster than a standard approach 11-31. 
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Fig. 1. A cross-section of a quantum directional coupler. Lateral dimensions are in 
nanometers. 

Fig. 2. E, - E distribution for y = 41 nm for various VGS values. 
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Fig. 3. Right wire current dependence on z-distance for various VG3 values. 

Fig. 4. Dependence of the output currents in the right and left wires on VG3. 




