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Abstract 

Monte Carlo simulation is often used to solve radiative transfer problems where 
complex physical phenomena and geometries must be handled. Slow conver- 
gence is a well known disadvantage of this method. In this paper we demon- 
strate that a significant improvement in computation time can be achieved by 
using Quasi-Monte Carlo (QMC) methods to simulate Rapid Thermal Process- 
ing. 

1. Introduction 

Monte Carlo simulation is an indispensable tool for modeling Rapid Thermal Pro- 
cesses (RTP) with an accuracy of a few degrees. Only this method allows very detailed 
modeling of the physical processes and geometrical complica.tions which arise in real 
applications involving radiation transport. A well known disadvantage of this method 
is slow convergence, which has prohibited wide spread usage. In this paper we demon- 
strate that a significant improvement in computation time can be achieved by using 
Quasi-Monte Carlo (QMC) methods to simulate radiative heat transfer. 

The QMC method [I] involves using deterministic, quasi-random sequences in place 
of random numbers in a Monte Carlo calculation. One well known example of such 
a sequence is the Halton sequence. While the idea of quasi-Monte Carlo is almost as 
old as the Monte Carlo approach itself, these methods have rarely been used in real 
world engineering problems. This may be attributed to the fact that many Monte 
Carlo problems are high dimensional, and quasi-random sequences tend to lose their 
advantage as dimension increases [2][3]. Also, great care must be taken to avoid 
problems arising from the fact that the quasi-random numbers are not independent. 

As the following results show, however, a considerable advantage can be won by 
applying quasi-random sequences to the modeling of the radiative heat transfer from 
the heater to the wafer inside Rapid Thermal Processing equipment. Figure 1 shows 
the draft of the cylinder symmetric projection of a typical single wafer reactor. 
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Figure 1: Geometry of the reactor and position of specific surface elements. 

2. Description of Radiation Exchange 

The radiative energy transfer inside the reactor can be described mathematically by 
an integral equation for the spectral radiation intensity. The solution of the integral 
equation leads to a problem of multidimensional integration. 

Let D be the interior surface of the reactor, x be a point on D and nx the interior 
normal. Let w be the direction of a radiation bundle and R+ be the half sphere of 
directions oriented toward the reactor interior. The optical surface properties are 
described by ~ ~ , ~ ( x , w ) ,  the spectral absorptivity (= emissivity), rxqT(x) the spectral 
reflectivity and P,(w t w') the (normalized) probability that a bundle coming from 
direction w is reflected into direction w'. T ( x )  is the temperature distribution of the 
surface. X(x,w) describes the target of a bundle on the surface starting at x with 
direction w. We restrict ourselves to opaque surfaces. 

The iterative solution of the integral equation leads to a series expression for the 
distribution Ex of radiation intensity impinging on the surface, Ex = CzP=, E?), 
where 

The series may be truncated such that the remaining terms are smaller than the 
desired accuracy. The dimension of integration is 2k + 2 + 1 in the k-th step (2 
dimensions for the initial position, one dimension for the spectral distribution). In 
case of specular reflection, P,(w t w') = 6(w - w' + 2(nx . won,) and the path 
is determined completely by the initial direction. The dimension of integration in 
this case is only 2+2+1. The above procedure is the fractional absorption method. 
When a probability for a complete absorption is introduced, we can call it a discrete 
absorption method. This method introduces one more dimension of integration for 
every discrete process. 
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Figure 2: Points with pseudo-random sequence, with quasi-random sequence 

3. The Computational Experiment 

The goal of the experiments was to determine the accuracy of the amount of heat 
transfer between surface elements as a function of computation time. We show here 
the results for specularly reflecting surfaces. The first step towards this goal was to 
compute error size as a function of N, the number of rays emitted from the source. 
This error size was determined by calculating results for an ensemble of 30 experiments 
for every choice of N and taking the standard deviation. In a typical experiment, 
N rays were emitted from a surface or point source located at surface 0. The initial 
direction was sampled using Lambert's Law, which means that the elevation angle 
was sampled from a cosine distribution, while the azimuthal angle was sampled from a 
uniform distribution on [O,2a]. The sampling was done using one point from a multi- 
dimensional quasi- or pseudo-random sequence, such that two angles were assigned 
separate dimensions. A further dimension was used to sample the initial energy of 
the ray from Planck's black body distribution. 

In the standard Monte Carlo method in which a pseudo-random sequence is used 
as the source of integration nodes, the expectation of the integration error for the 
integral J f (x)dx is 

f(f,  N )  = 4 f  ) N - O  (1) 
with p = 0.5. For many problems, quasi-random sequences [4] significantly outper- 
form random sequences in the range of practical N. The convergence rate is generally 
between ,L3 = 0.5 and ,f3 = 1.0. The best way to predict performance for a specific type 
of problem is to analyze the results for a test problem, as is done below. Figure 2 
shows the coverage of the 2-D cube with points generated from a pseudo-random 
sequence and a Halton sequence. 

4. Results 

In Figure 3 we show results using the fractional energy absorption method and spec- 
ularly reflecting surfaces. 

Figure 3 shows the expected relative error & ( N )  as a function of the number of emitted 
rays N for the Halton sequence and a pseudo-random sequence using the fractional 
absorption method with a constant surface absorptivity of 0.4. Results are given for 
surface 1 and surface 2 on the wafer. The plotted points are the calculated errors for 
various N (averaged over 30 runs), while the lines are a least squares fit of the data 
to the functional form (1). 
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Figure 3 illustrates a clear advantage of using a quasi-random sequence over a pseudo- 
random sequence in the calculation, both in error size and in convergence rate (i.e., 
p). The error in calculating the energy transfer to surface 1 with N = 100000 is over 
a factor of three smaller if the Halton sequence is used than if a random sequence is 
used. 

In our computational experiments we studied several factors like surface absorptivity, 
position of wafer surface to heat source, and choice of quasi-random sequence. A 
comparison of the fractional and discrete absorption methods was also made. Re- 
sults show accelerated convergence and improved accuracy of QMC over the stan- 
dard Monte Carlo approach, and indicate when the fractional and discrete absorption 
methods should be used to obtain optimal results. 
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Figure 3: Comparison of random and quasi-random sequences using the fractional 
absorption method with absorptivity = 0.4. 
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