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Abstract 

For a linear potential function one-dimensional constant current drift-diffusion 
equations can be integrated in closed form, yielding the Scharfetter-Gummel 
(SG) discretization. The box-method generalizes the insistence on exact cur- 
rent conservation to higher dimensions by imposing the exact balancing of 
Scharfet ter- G ummel fluxes through box-faces. 

It has long been recognized that the one-dimensional SG discretization de- 
fines a finite element method that yields the exact solution by employing closed 
form solutions as an approximant. Finite element analyses of the box-method 
tend to employ piecewise linear approximating functions and fail to incorporate 
the exact integration properties of the SG discretization. 

Nevertheless, the current conservation validates for the SG box-method an 
analytical coupling limitation for the differential drift-diffusion equations. 

1. The Scharfetter-Gummel Discretization 

In the discretization of the one-dimensional zero generation recombination drift- 
diffusion equations, the Scharfetter-Gummel technique [9] reproduces exactly the 
constant current. Let u denote the electrostatic potential 4 in units of the ther- 
mal potential UT E ( k ~ T ) / q ,  where kB is Boltzmann's constant, T is the ambient 
temperature, and q is the size of the electron charge. Then, under the assumption of 
Einstein's relations the one-dimensional zero generation-recombination drift-diffusion 
equation for the conduction electron density n is given by 

The solution n(x) to equation (1.1) can be expressed in terms of a closed form Green's 
function, analogously to  the procedure in [7]. To a piecewise linear potential function 
U,(x) with nodal values uj  at nodes x j  can be associated a vector u. The Scharfetter- 
Gummel expression for the one-dimensional electron current I, on an interval [xi-l, xi] 
with xi-xi-1 = hi is expressed in terms of the Bernouilli function B(x)  = x/[exp(x)- 
11 as in 

1 
I , - P ~ ( u ~ ) ~ B T [ B ( u ~ + I  - uj)nj+l - B ( u j  - uj+l)n,]. 

h, 
(1.2) 

As observed in [4] and elsewhere, the SG approximation coincides with a finite element 
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method in which the Slotboom variable v(x) = exp[-u(x)]n(x) is expanded in terms 
of nodal, u(x)-dependent basis-functions 

(J.-, ~nex~[-u(t)Idt)/(S:-~n ex~[-u(t)Idt)  if z E [xj-l, xj], 
(I,".)" Pn ex~[-u(t)]dt)/(J~:+1U~ exp[-u(t)]dt) if x E [xj, xj+l], (1.3) 

0 elsewhere. 

Let the vector with components n j  solve the SG discretization of (1.1). Then, the 
function 

n(x) = C n j  ~ x P [ ~ ( x )  - u j l J j ( ~ )  (1.4) 
3 

also solves equation (1.1). Hence, solution of the SG discretization of (1.1) for a 
piecewise linear potential U,(x) yields the exact solution to (1.1). In terms of quasi- 
Fermi levels n(x) = exp[u(x) - v(x)], p(x) = exp[w(x) - u(x)]. 

2. Box Method Discretization 

The prevalence in two and three-dimensional computational codes of the SG box- 
method, see e.g. [2, 10, 11, 31, is possibly due to the consistent handling of current 
conservation. Discretization by the box-method of the Slotboom variable equations 

is defined on a mesh of boxes Bk dual to the vertices xk in a mesh of simplexes. 
Box-faces f j k  are planar. Even though the current is not equal to a constant in higher 
dimensions, in the Scharfetter-Gummel box-method fluxes through box-faces fij are 
approximated analogously to (1.2), yielding for the electron density vector n 

C Y P n [ B ( u j  - u;)nj - B(u; - uj)ni] = 0. 
x, adjacent x, 

(2.3) 

The nodal values of the Slotboom variable u are then given by vj = nj exp[-uj]. 

Both in the box-method, and in Galerkin's equations for a piecewise linear approxi- 
mation h, one component uj of the solution vector v corresponds to every vertex x j  
of a simplicia1 mesh. In the sequel, the notation Vv = xj ~jq5~(x)  will be employed 
for the piecewise linear interpolant of the vector of nodal values vj at the vertices 
xj. With a vector v will also be associated the nodal piecewise polynomial function 
V,,,, = Cj vj$j(x). Finally, define piecewise constant box test-functions $B,(x) that 
are equal to 1 in the interior of box Bk and 0 elsewhere. 

The analysis of the box-method is simplified significantly by reducing (2.1) on each 
element S, in the mesh to the Laplacean by replacing the coefficient pn exp(u) by - - - - .  , - 

a function that assumes elemental averane values u, ex&). The boundary condi- - . - - ,  , 
tions are set piecewise linear. In [6] mild conditions are presented under which this 
simplified BVP approximates the original BVP (2.1) to sufficient accuracy. 

Finite element analysis of the box-method commences with the observation (for two 
dimensions in Bank and Rose in [I], for N dimensions in Lemnla 2.3 of [6]) that for 
box-faces f J k  perpendicular to edges e,k in the finite element mesh the perpendicular 
bisector box-method Laplacean Element Matrix (LES) is identical to the Petrov- 
Galerkin LES for piecewise linear functions with box test-functions $ B ~ .  
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The components of this perpendicular bisector box-method LES, EB,s,, are defined in 

terms of box-faces f::), normal to edges ejk and delimited by the faces Fk of element 
S T ,  by 

(S ) E B , s , , ~ ~  = ( l f j k T  I/lejkl). P 4 )  

The components of the corresponding global Petrov-Galerkin stress-matrix are defined 

A P G , ~ ~  f C Pn ~XP(U)S,EB,S,,~+ 
SF adjacent e;, 

(2.5) 

The analysis in [6] relies on piecewise linearity of the approximant in a generalization 
of the two-dimensional results of Bank and Rose in [I] (see also [5]). By the results 
in Lemmas 2.1 and 2.2 of [6] the Petrov-Galerkin LES EPG,S, for a linear approx- 
imation and test-functions $, that assume on element faces Fk the average values 
(SF, $,dx/ JFk dx) = p,k can be expressed in terms of the piecewise linear Epl,s, and 
the differences q,h = p,k - (1/N) of the face-averages p,k of the test-functions $, from 
the piecewise linear averages ( 4 % ) ~ ~  = (1/N) as in 

Here the matrix Qs, is defined by &s,,il = qil, the matrix of the deviations from the 
mean of the face-averages p;l. The equivalence EB,~ ,  = EPG,+B,~, and equation (2.6) 
imply immediately (see Corollary 2.4 of [6]) that if boxes Bj partition equally all faces 
Fk of an N dimensional simplex ST, then EBVS, = Epl,S,. This observation combined 
with equation (2.6) implies that in three dimensions E B , ~ ,  = EpI,S, and Qs, = 0 if 
and only if ST is a regular tetrahedron. 

The error analysis in [6] admits this difference in stress matrices subject to the fol- 
lowing equivalences of energies defined by the piecewise linear Galerkin LES EPlvs, = 
as,(4,, bj) and the box-method LES EB,~,  defined in (2.4) (here Js, Vf.Vgdx = 

.s,(f,g) and utDs,u = as,(V,p,n,V,p,u).) 

Piecewise polynomial test-functions $H,~(x) that assume appropriate face averages are 
substituted for the $ ~ , j .  Inequality (2.8), below, reflects a special case of Theorem 
3.1 in [6]. 

If c 5 cs,, and CD > CD,s, in (2.7) on all elements ST. If 5 solves the simplified 
version of (2.1), and the vector v solves the approximate box-method (2.5), then V, 
realizes a piecewise linear order of accuracy because for all piecewise linear Vw that 
satisfy identical boundary conditions as V, 

Approximation results from [6] and inequality (2.8) yield for the function n,(x) = 
cj nj  exp[u(x) - ~,]q5,~,j(x), defined in terms of a piecewise linear Slotboom variable 
vpl(x) and the vector n solving the box-method (2.3), a bound similar to (2.8). 

3. Equation Coupling and The Scharfetter-Gummel Box-method 

The exact current conservation can be employed to validate for the SG box-method 
discretization an analogy of a simplified coupling limitation for the drift-diffusion 
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equation for electrons from [8]. The mobilities p, and pp are assumed to be functions 
of the location x only. In terms of quasi-Fermi levels the system (2.1-2.2) is written 

-V. [p, exp(u - v)Vv] = 0, (3.1) 
-V. [p, exp(w - u)Vw] = 0. (3.2) 

For i = 1,2, let u; be bounded with square-integrable derivative, let v; be the solution 
to (3.1). We introduce the averages G = i (u1+u2) ,  fi = $(vl +v2), and the differences 
Au = u2 - ul, Av = vz - vl. Then for (3.1) 

The SG box-method discretization of the drift-diffusion equations balances the sum 
of one-dimensional constant-current expressions for the fluxes through box-faces. The 
following inequality is valid for quasi-Fermi levels on edges ejk, corresponding to the 
optimized expansion of the Slotboom variables (1.3). 

For i = 1,2, and the vectors u,, let n; solve the SG box-method equations (2.3). 
On each edge e,j in the mesh let u be the linear interpolant of the nodal values u; 
and u j  at the vertices xi and xj, and let v be the univariate quasi-Fermi level v(t) 
corresponding to the conduction-electron density function (1.4). Then 
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