On the Scharfetter-Gummel Box-Method

T. Kerkhoven

Department of Computer Science, University of Illinois at Urbana-Champaigne 1304 W. Springfield Avenue, Urbana, IL 61801, USA

Abstract

For a linear potential function one-dimensional constant current drift-diffusion equations can be integrated in closed form, yielding the Scharfetter-Gummel (SG) discretization. The box-method generalizes the insistence on exact current conservation to higher dimensions by imposing the exact balancing of Scharfetter-Gummel fluxes through box-faces.

It has long been recognized that the one-dimensional SG discretization defines a finite element method that yields the exact solution by employing closed form solutions as an approximant. Finite element analyses of the box-method tend to employ piecewise linear approximating functions and fail to incorporate the exact integration properties of the SG discretization.

Nevertheless, the current conservation validates for the SG box-method an analytical coupling limitation for the differential drift-diffusion equations.

1. The Scharfetter-Gummel Discretization

In the discretization of the one-dimensional zero generation recombination driftdiffusion equations, the Scharfetter-Gummel technique [9] reproduces exactly the constant current. Let u denote the electrostatic potential ϕ in units of the thermal potential $U_T \equiv (k_B T)/q$, where k_B is Boltzmann's constant, T is the ambient temperature, and q is the size of the electron charge. Then, under the assumption of Einstein's relations the one-dimensional zero generation-recombination drift-diffusion equation for the conduction electron density n is given by

$$[\mu_n(nu_x - n_x)]_x = 0. \tag{1.1}$$

The solution n(x) to equation (1.1) can be expressed in terms of a closed form Green's function, analogously to the procedure in [7]. To a piecewise linear potential function $U_{\mathbf{u}}(x)$ with nodal values u_j at nodes x_j can be associated a vector \mathbf{u} . The Scharfetter-Gummel expression for the one-dimensional electron current I_n on an interval $[x_{i-1}, x_i]$ with $x_i - x_{i-1} = h_i$ is expressed in terms of the Bernouilli function $B(x) = x/[\exp(x) - 1]$ as in

$$I_{n,j} = -\frac{1}{h_j} \mu_n(u_x) k_B T[B(u_{j+1} - u_j)n_{j+1} - B(u_j - u_{j+1})n_j].$$
(1.2)

As observed in [4] and elsewhere, the SG approximation coincides with a finite element

method in which the Slotboom variable $\nu(x) = \exp[-u(x)]n(x)$ is expanded in terms of nodal, u(x)-dependent basis-functions

$$\xi_{j}(x) = \begin{cases} (\int_{x_{j-1}}^{x} \mu_{n} \exp[-u(t)]dt) / (\int_{x_{j-1}}^{x_{j-1}} \mu_{n} \exp[-u(t)]dt) & \text{if } x \in [x_{j-1}, x_{j}], \\ (\int_{x}^{x_{j+1}} \mu_{n} \exp[-u(t)]dt) / (\int_{x_{j}}^{x_{j+1}} \mu_{n} \exp[-u(t)]dt) & \text{if } x \in [x_{j}, x_{j+1}], \\ 0 & \text{elsewhere.} \end{cases}$$

Let the vector with components n_j solve the SG discretization of (1.1). Then, the function

$$n(x) = \sum_{j} n_{j} \exp[u(x) - u_{j}]\xi_{j}(x)$$
(1.4)

also solves equation (1.1). Hence, solution of the SG discretization of (1.1) for a piecewise linear potential $U_{\mathbf{u}}(x)$ yields the exact solution to (1.1). In terms of quasi-Fermi levels $n(x) = \exp[u(x) - v(x)]$, $p(x) = \exp[w(x) - u(x)]$.

2. Box Method Discretization

The prevalence in two and three-dimensional computational codes of the SG boxmethod, see e.g. [2, 10, 11, 3], is possibly due to the consistent handling of current conservation. Discretization by the box-method of the Slotboom variable equations

$$-\nabla \cdot \left[\mu_n \exp(u) \nabla \nu\right] = 0, \qquad (2.1)$$

$$-\nabla \cdot \left[\mu_p \exp(-u) \nabla \omega\right] = 0, \qquad (2.2)$$

is defined on a mesh of boxes B_k dual to the vertices x_k in a mesh of simplexes. Box-faces f_{jk} are planar. Even though the current is not equal to a constant in higher dimensions, in the Scharfetter-Gummel box-method fluxes through box-faces f_{ij} are approximated analogously to (1.2), yielding for the electron density vector **n**

$$\sum_{x_j \text{ adjacent } x_i} \frac{|f_{ij}|}{|e_{ij}|} \mu_n [B(u_j - u_i)n_j - B(u_i - u_j)n_i] = 0.$$
(2.3)

The nodal values of the Slotboom variable ν are then given by $\nu_j = n_j \exp[-u_j]$.

Both in the box-method, and in Galerkin's equations for a piecewise linear approximation V_h , one component ν_j of the solution vector ν corresponds to every vertex x_j of a simplicial mesh. In the sequel, the notation $V_{\nu} = \sum_j \nu_j \phi_j(x)$ will be employed for the piecewise linear interpolant of the vector of nodal values ν_j at the vertices x_j . With a vector \mathbf{v} will also be associated the nodal piecewise polynomial function $V_{pp,\mathbf{v}} = \sum_j v_j \psi_j(x)$. Finally, define piecewise constant box test-functions $\psi_{B_k}(x)$ that are equal to 1 in the interior of box B_k and 0 elsewhere.

The analysis of the box-method is simplified significantly by reducing (2.1) on each element S_r in the mesh to the Laplacean by replacing the coefficient $\mu_n \exp(u)$ by a function that assumes elemental average values $\overline{\mu_n \exp(u)}$. The boundary conditions are set piecewise linear. In [6] mild conditions are presented under which this simplified BVP approximates the original BVP (2.1) to sufficient accuracy.

Finite element analysis of the box-method commences with the observation (for two dimensions in Bank and Rose in [1], for N dimensions in Lemma 2.3 of [6]) that for box-faces f_{jk} perpendicular to edges e_{jk} in the finite element mesh the perpendicular bisector box-method Laplacean Element Matrix (LES) is identical to the Petrov-Galerkin LES for piecewise linear functions with box test-functions ψ_{B_k} .

T. Kerkhoven: On the Scharfetter-Gummel Box-Method

The components of this perpendicular bisector box-method LES, E_{B,S_r} , are defined in terms of box-faces $f_{jk}^{(S_r)}$, normal to edges e_{jk} and delimited by the faces F_k of element S_r , by

$$E_{B,S_r,jk} = (|f_{jk}^{(S_r)}|/|e_{jk}|).$$
(2.4)

The components of the corresponding global Petrov-Galerkin stress-matrix are defined

$$A_{PG,ij} \equiv \sum_{S_r \text{ adjacent } e_{ij}} \overline{\mu_n \exp(u)}_{S_r} E_{B,S_r,ij}.$$
(2.5)

The analysis in [6] relies on piecewise linearity of the approximant in a generalization of the two-dimensional results of Bank and Rose in [1] (see also [5]). By the results in Lemmas 2.1 and 2.2 of [6] the Petrov-Galerkin LES E_{PG,S_r} for a linear approximation and test-functions ψ_i that assume on element faces F_k the average values $(\int_{F_k} \psi_i dx / \int_{F_k} dx) = p_{ik}$ can be expressed in terms of the piecewise linear E_{pl,S_r} and the differences $q_{ik} = p_{ik} - (1/N)$ of the face-averages p_{ik} of the test-functions ψ_i from the piecewise linear averages $\langle \phi_i \rangle_{F_k} = (1/N)$ as in

$$E_{PG,S_r} = [I - NQ_{S_r}]E_{pl,S_r}.$$
(2.6)

Here the matrix Q_{S_r} is defined by $Q_{S_r,il} = q_{il}$, the matrix of the deviations from the mean of the face-averages p_{il} . The equivalence $E_{B,S_r} = E_{PG,\psi_B,S_r}$ and equation (2.6) imply immediately (see Corollary 2.4 of [6]) that if boxes B_j partition equally all faces F_k of an N dimensional simplex S_r , then $E_{B,S_r} = E_{pl,S_r}$. This observation combined with equation (2.6) implies that in three dimensions $E_{B,S_r} = E_{pl,S_r}$ and $Q_{S_r} \equiv 0$ if and only if S_r is a regular tetrahedron.

The error analysis in [6] admits this difference in stress matrices subject to the following equivalences of energies defined by the piecewise linear Galerkin LES $E_{pl,S_r} = a_{S_r}(\phi_i, \phi_j)$ and the box-method LES E_{B,S_r} defined in (2.4) (here $\int_{S_r} \nabla f \cdot \nabla g dx = a_{S_r}(f,g)$ and $\mathbf{u}^t D_{S_r} \mathbf{u} \equiv a_{S_r}(V_{pp,\mathbf{u}}, V_{pp,\mathbf{u}})$.)

$$c_{S_r} \mathbf{u}^t E_{pl,S_r} \mathbf{u} \le \mathbf{u}^t E_{B,S_r} \mathbf{u}, \quad \mathbf{u}^t D_{S_r} \mathbf{u} \le C_{D,S_r} \mathbf{u}^t E_{B,S_r} \mathbf{u}.$$
(2.7)

Piecewise polynomial test-functions $\psi_{H,j}(x)$ that assume appropriate face averages are substituted for the $\psi_{B,j}$. Inequality (2.8), below, reflects a special case of Theorem 3.1 in [6].

If $c \leq c_{S_r}$, and $C_D \geq C_{D,S_r}$ in (2.7) on all elements S_r . If $\tilde{\nu}$ solves the simplified version of (2.1), and the vector \mathbf{v} solves the approximate box-method (2.5), then $V_{\mathbf{v}}$ realizes a piecewise linear order of accuracy because for all piecewise linear $V_{\mathbf{w}}$ that satisfy identical boundary conditions as V_{ν}

$$\sqrt{\int_{G} \overline{\mu_n \exp(u)} |\nabla(V_{\mathbf{v}} - \tilde{\nu})|^2 dx} \le [1 + \sqrt{\frac{C_D}{c}}] \sqrt{\int_{G} \overline{\mu_n \exp(u)} |\nabla(V_{\mathbf{w}} - \tilde{\nu})|^2 dx}.$$
 (2.8)

Approximation results from [6] and inequality (2.8) yield for the function $n_{\nu}(x) = \sum_{j} n_{j} \exp[u(x) - u_{j}] \phi_{pl,j}(x)$, defined in terms of a piecewise linear Slotboom variable $\nu_{pl}(x)$ and the vector **n** solving the box-method (2.3), a bound similar to (2.8).

3. Equation Coupling and The Scharfetter-Gummel Box-method

The exact current conservation can be employed to validate for the SG box-method discretization an analogy of a simplified coupling limitation for the drift-diffusion

equation for electrons from [8]. The mobilities μ_n and μ_p are assumed to be functions of the location x only. In terms of quasi-Fermi levels the system (2.1-2.2) is written

$$-\nabla \cdot \left[\mu_n \exp(u-v) \nabla v\right] = 0, \qquad (3.1)$$

$$-\nabla \cdot \left[\mu_p \exp(w-u) \nabla w\right] = 0. \tag{3.2}$$

For i = 1, 2, let u_i be bounded with square-integrable derivative, let v_i be the solution to (3.1). We introduce the averages $\tilde{u} = \frac{1}{2}(u_1 + u_2)$, $\tilde{v} = \frac{1}{2}(v_1 + v_2)$, and the differences $\Delta u = u_2 - u_1$, $\Delta v = v_2 - v_1$. Then for (3.1)

$$\sqrt{\int_{G} \mu_n \exp(\tilde{u} - \tilde{v}) |\nabla \Delta v|^2 dx} \le \sqrt{\int_{G} \mu_n \exp(\tilde{u} - \tilde{v}) |\nabla \Delta u|^2 dx}$$
(3.3)

The SG box-method discretization of the drift-diffusion equations balances the sum of one-dimensional constant-current expressions for the fluxes through box-faces. The following inequality is valid for quasi-Fermi levels on edges e_{jk} , corresponding to the optimized expansion of the Slotboom variables (1.3).

For i = 1, 2, and the vectors \mathbf{u}_i , let \mathbf{n}_i solve the SG box-method equations (2.3). On each edge e_{ij} in the mesh let u be the linear interpolant of the nodal values u_i and u_j at the vertices x_i and x_j , and let v be the univariate quasi-Fermi level v(t)corresponding to the conduction-electron density function (1.4). Then

$$\sqrt{\sum_{e_{jk}} \int_{e_{jk}} \exp[\tilde{u} - \tilde{v}] |\Delta u_t|^2 dt} \ge \sqrt{\sum_{e_{jk}} \int_{e_{jk}} \exp[\tilde{u} - \tilde{v}] |\Delta v_t|^2 dt}.$$
(3.4)

References

- Randolph E. Bank and Donald J. Rose. Some Error Estimates for the Box Method. SIAM J. on Numer. Anal., 24:777-787, 1987.
- [2] Randolph E. Bank, Donald J. Rose, and Wolfgang Fichtner. Numerical Methods for Semiconductor Device Simulation. SIAM J. on Scient. and Statist. Comp., 4(3):416-435, September 1983.
- [3] E.M. Buturla, P.E. Cottrell, B.M. Grossman, and K.A. Salzburg. Finite-Element Analysis of Semiconductor Devices: The Fielday Program. *IBM J. Res. Develop.*, 25:218–231, July 1981.
- [4] Walter L. Engl, Heinz K. Dirks, and Bernd Meinerzhagen. Device Modeling. Proceedings of the IEEE, 71(1):10-33, January 1983.
- [5] W. Hackbusch. On First and Second Order Box Schemes. Computing, 41:277-296, 1989.
- [6] Thomas Kerkhoven. Piecewise Linear Petrov-Galerkin Analysis of the Box-Method. SIAM J. Numer. Anal., 20 pages, submitted.
- [7] Thomas Kerkhoven. On the Effectiveness of Gummel's Method. SIAM J. on Scient. & Statist. Comput., 9:48-60, January 1988.
- [8] Thomas Kerkhoven. A Computational Analysis Of The Steady State Drift-Diffusion Semiconductor Model. SIAM, Philadelphia, 1993.
- [9] D. Scharfetter and H.K. Gummel. Large signal analysis of a silicon read diode oscillator. *IEEE Trans. Electron Devices*, ED-20:64-77, 1969.
- [10] Siegfried Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, New York, 1984.
- [11] Jan W. Slotboom. Computer-Aided Two-Dimensional Analysis of Bipolar Transistors. IEEE TRans. Electron. Dev., ED-20(8):669-679, August 1973.