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Abstract 

Coupled and decoupled iterative algorithms for the solution of nonlocal 
transport models are investigated. The decoupled scheme described in [I] 
exhibits excellent convergence properties except under strong breakdown 
conditions, where the full Newton method is required. Simulation results of 
snap-back curves for submicron BJT and MOS devices illustrate the potential of 
both algorithms. 

1. Introduction 

Deterministic nonlocal transport models are widely used for the analysis of 
transport phenomena in submicron devices. These models provide a 
description of effects that are neglected by the conventional drift-diffusion 
model (DDM). The effects include velocity overshoot and nonlocal impact 
ionization. These nonlocal models are commonly referred to as energy 
balance (EB), energy transport (ET) or hydrodynamic (HD) models. This 
class of models will be referred to here as 'energy balance' models. 

From the numerical point of view device simulation using energy balance 
models is more complicated than simulation based on the DDM. 
Additional partial differential equations (PDE's) must be solved, and the 
system of PDE's exhibits greater nonlinearity. A natural decoupled iterative 
algorithm for energy balance models is as follows: the electron and hole 
continuity equations and Poisson's equation are solved by either Gummel 
or Newton methods with the carrier temperatures held constant; and then 
electron and hole temperatures are updated from the solution of the energy 
balance equations. This approach is added easily to existing general 
purpose device simulators, and is therefore widely used. 

Meinerzhagen et. al. [I] have shown that the convergence rate of this 
algorithm is slow for high biases, and that for some cases convergence may 
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not be obtained at all. They suggested a new algorithm that differs from the 
previous one at the second step. In the new algorithm the energy balance 
equation is solved simultaneously with the carrier continuity equation. A 
dramatic increase in convergence rate for MOS transistor calculations is 
obtained. At the moment this algorithm seems to be the best available for 
unipolar simulations. The work described here was performed to 
investigate the convergence rate of Meinerzhagen's method for bipolar 
simulations, especially in the strong breakdown region; and to establish 
whether it is necessary to also provide the full Newton algorithm in a truly 
general purpose device simulator. 

2. Energy Balance Model 

The variant of the energy balance model used in the present work follows 
[2], and was described in [3]. The impact ionization coefficient for electron 
was modeled as: 

bn 
% = an ~xP( -  G) F 

with an and bn taken from [4], and an effective electric field determined 
from the relationship: 

3 kT, E 
eff - qh, ' 

where An is the energy relaxation length for electrons. A similar expression 
is used for ap. 

3. Methods 

Meinerzhagen's method and the full Newton method for all five equations 
were implemented in SPISCES. Meinerzhagen's algorithm is implemented 
in the following form. For each outer loop, the electron and hole continuity 
equations and Poisson's equation are solved for either a specified number 
of iterations, or to convergence, using Newton iteration. One Newton 
iteration is then performed for the simultaneous solution of the electron 
continuity and electron temperature equations, after which one Newton 
iteration is performed for the simultaneous solution of the hole continuity 
and hole temperature equations. (This implementation differs slightly from 
[I] where only one Newton iteration was performed at the first step. This 
does not impact the asymptotic behavior of the convergence rate.) All 
linearized systems of equations are solved with a direct solver. 

4. Results 

Numerical experiments were performed to establish the behavior of the 
different algorithms for several situations. The first experiment was for a 
submicron bipolar transistor similar to the device considered in [5]. The 
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emitter-base voltage was kept constant and equal to -0.75V. An external 
resistance of 1.0e5 Q.pm was connected between the collector and a voltage 
source VCC. Figure 1 shows the calculated collector current as a function of 
collector-base voltage. Figure 2 shows the error versus iteration number for 
different values of Vcc: curve 1 is for Vcc = 8.5V, curve 2 for Vcc = 10.5V, 
and curve 3 for Vcc = 11V, all calculated using Meinerzhagen's method with 
the equations solved to convergence in the first step. The corresponding 
collector-base voltages were 7.99, 9.54 and 9.87V respectively. Curve 4 is for 
VCC = 11V, calculated using the full Newton method. Errors are measured 
from the fully converged solution obtained using Newton method with 
very tight convergence criteria. This figure shows that the rate of 
convergence of Meinerzhagen's algorithm is excellent for Vcc = 8.5V, but 
that it decreases rapidly near the snap-back voltage. The Newton algorithm 
exhibits similar behavior to that shown in Figure 2 for all biases. 

A second experiment was for a conventional MOS device with a channel 
length of 0.45 pm. The gate, source and substrate voltages were grounded. 
An external resistance of l.el0 Q.pm was connected between the drain, and 
a voltage source Vdd. The drain current as a function of drain voltage is 
shown in Figure 3. Errors versus iteration number for different values of 
Vdd are shown in Figure 4. Curve 1 is for Vdd=12.25V, curve 2 is for 
Vdd=12.4125V, curve 3 is for Vdd=12.425V, and curve 4 is for Vdd=12.425V. 
The corresponding drain voltages were 12.246, 12.364 and 12.362V 
respectively. As before, the first three curves are calculated using 
Meinerzhagen's method with the equations solved to convergence in the 
first step, and curve 4 is obtained using full Newton iteration. The 
decoupled algorithm shows fast convergence for Vdd=12.25V, but fails near 
the snap-back voltage. 

5 .  Conclusions 
Meinerzhagen's decoupled algorithm [I] exhibit; excellent convergence 
properties for pre-breakdown two carrier, two temperature simulations. 
The convergence rate decreases rapidly under strong breakdown condi- 
tions. The full Newton method is required to handle such conditions. 
Meinerzhagen's algorithm and the full Newton method will both be 
available in future releases of the SPISCES and BLAZE device simulators. 
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