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Abstrac t 

The implications of high channel doping for the threshold voltage are discussed. Com­
parison of theory with experimental MOS devices of various generations show that quantum-
mechanical effects are not to be neglected for deep-submicron MOSFET's. A simple ana­
lytical expression to account for these effects is proposed. 

1 Introduction 

Device simulators t reat the MOSFET in a classical way in the sense tha t only the Poisson 
and the continuity equations are solved. Effects arising from the quantum nature of the 2-D 
electron gas are therefore either completely ignored or enter the equations indirectly through 
the modeling of, for instance, the carrier mobility. Usually this approach is adequate, and there 
is no need for a self-consistent treatment of the problem which would require the solution of the 
Schrodinger equation. 

At the onset of strong inversion the channel area is depleted causing a potential well per­
pendicular to the Si-Si02 interface to which the electrons in the inversion layer are confined. 
Electron motion in this direction is therefore quantized. As MOSFET's are scaled down to 
deep-submicron dimensions high levels of channel doping are needed to suppress punch-through 
currents. As a consequence, the potential well to which the electrons are confined becomes 
steeper and deeper. Quantum behavior is therefore expected to become more important for 
these MOSFET's . In tins paper we will investigate the consequences of quantum-mechanical 
treatment of the problem for the long-channel threshold voltage. 

2 Experimental 

The MOS devices investigated in this report were scaled according to the quasi-constant-voltage 
approach [1], and were designed for nominal polysilicon gate lengths of 0.7, 0.5, 0.35, 0.25 and 
0.15 fjim., respectively (See also Table 1). The threshold voltage was determined from 8x8-/zm2 

devices and is here defined as the gate voltage at which a drain current of 100 nA flows (VDS = 
0.1 V). We have also simulated the threshold voltages using the device simulator MINIMOS-4. 
Significant deviations exist between simulations and measurements. The difference between the 
simulated and measured threshold voltage is plotted in Fig. 1 versus the oxide thickness. We 
have verified tha t this difference can not be explained by trivial causes like deviations in the 
channel profile (measured with SIMS), the oxide thickness (determined from a 200 x 200-jUm2 

MOS capacitance in accumulation), oxide charges (below the detection limit of ~ 10 9 cm - 2 ) or 
the existence of a depletion layer inside the polysilicon gate (can be determined from the MOS 
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design rule 
(Mm) 

0.70 
0.50 
0.35 
0.25 
0.15 

oxide thickness 
(nm) 

17.5 
13.3 
9.4 
7.6 
5.9 

junction depth 
(/an) 

0.30 
0.23 
0.16 
0.12 
0.12 

<NA> 
(cm"3) 

0.7 x 1017 

1.0 x 1017 

1.5 x 1017 

2.5 x 1017 

3.5 x 1017 

Table 1: Devices used in the experiments 

capacitance in the presence of an inversion layer). It should be emphasized that each point 
in Fig. 1 corresponds to a different MOS generation. A possible explanation will be presented 
below. 

3 Theory 

A full self-consistent quantum-mechanical treatment as a function of the gate voltage is ex­
tremely difficult and is only possible by numerical means. We can however solve the problem if 
we restrict ourselves to the state of weak inversion where the depletion layer already exists and 
the contribution of the minority carriers to the potential is negligible. The wave function of a 
long-channel MOSFET is \I> = $(z) exp (ikr) with k in the (a;, y)-plane. The coupled system of 
Poisson and Schrodinger equations is 

^£zHz) + (En - V(z)) *(z) = 0 (1) 

JLv{z) = JLp{z) * ±NA. (2) 
dz £Si £Si 

The channel doping NA is taken to be homogeneous. If we further assume that the width of 
the inversion layer is small compared to the width of the depletion layer, we may linearize the 
potential and have 

V(z) = q£z. (3) 

Here, £ is the electric field (assumed constant) due to the charge in the depletion layer. The 
Schrodinger equation can be solved [2] and the solution consists of Airy functions with energy 
levels given by 

n ^ 2 V / 3 r 3 cl 3 A2/3 

En « -Trq£(n + -) 
\2m* j [2 H K 4 . 

The average distance to the interface in sublevel n is found to be 

(4) 

2-tin / r X 

<Z»>=W- (5) 
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Figure 1: Difference between simulated and measured threshold voltages for various MOS gen­
erations. The open circles denote the measurements, the solid line is calculated with Eq. 9. 

The average distance < z^ M > to the interface can be calculated if the occupation of the different 
sublevels is taken into account. For the conventional case we find < 2 C 0 N V > = kT/q£. The 
total number of free carriers, N, can be calculated and is equal to [3] 

m*kT 
N = — f $ > [1 + exP{(£F - En)/kT}}, 

nh 
(6) 

where Ep is the position of the Fermi level. Although the summation runs in principle over all 
sublevels n, it should be mentioned that at high levels of channel doping the splitting between 
the energy levels is large compared to kT/q and only very few levels are actually occupied. 

The quantum-mechanical solution differs in several manners from the conventional solution 
(see Fig. 2). First, the conventional solution consists of a continuum of energy levels starting 
at the bot tom of the conduction band, while the energy spectrum of the quantum-mechanical 
solution consists of a discrete set of energy levels. The first allowed energy level, .So* does 
not coincide any more with the bot tom of the conduction band Ec, Second, the shape of the 
minority carrier density in the state of inversion differs for the two solutions. In the classical 
picture the carrier concentration reaches its maximum at the Si-SiC>2 interface. The quantum 
solution, on the other hand, shows a carrier concentration which is zero at the interface and an 
average distance to the interface larger than in the conventional calculations. 

In order to establish the influence of both effects on the long-channel threshold voltage of a 
MOSFET, we will now focuss on the surface potential needed to create the state of inversion. 
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Figure 2: 

(a) Schematic representation of the potential in strong inversion. At the onset of inversion the 
potential reduces to a triangular shape (dashed line). 
(b) Electron density versus distance. 
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Figure 3: Band diagram for an n+ polysilicon gate on a p-type substrate. The part near the 
interface is shown in more detail in the inset, 

(i) From the expression for the total number of free carriers (Eq. 6), it is clear tha t the position 
of the Fermi level is measured from the energy levels En instead of from the bot tom of the 
conduction band. This involves an extra band bending A $ 5 of at least E0/q (Ec - 0, see also 
Fig. 3). (ii) The effects of the different shape of the electron density n(z) are more difficult 
to treat . Compared to the conventional calculations, the average distance to the interface is 
increased by an amount Az = < z^u > - < zcmY > (Fig. 2b) [4]. We can use the expression 
for the potential (Eq. 3) to calculate the additional band bending needed to account for this 
effect. We find A$s = £&z, implying an increase of the depletion width equal to Az. (Hi) 
Finally, the MOS capacitance in the presence of an inversion layer is slightly modified and is 
equal to 

Cox = SoxAeff, (7) 

with teiT = tox + (eox/eSi)Az. 
We can now calculate the quantum-mechanical threshold voltage by substituting 

$ s = *CONV + Ays ( g ) 

with A<I>5 — Eo/q + EAz into the standard formula for the long-channel threshold voltage. We 

A'e 
1 

- -y^^ 
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find 

rCONv , A.T. f, , 1 l£siq<NA> v>*v' + ^ 1 + 2 c O p ^ • (9) 

A simple expression for Az can be obtained if we assume that only the first allowed energy level 
is occupied, i.e., 

dqb qt 
In realistic devices the channel profile is inhomogeneous, which makes it somewhat more difficult 
to calculate the exact position of the energy levels En. However, the dependence of En on the ac­
ceptor concentration does not change. We shall therefore assume that EQ = qa < NA > '' , with 
< NA > the acceptor concentration averaged over the depletion layer and a a proportionality 
factor. Combining the two contributions to A\Ps, we finally find 

A*g=4a<t f A > 1 / 3 - —• (11) 
3 q 

4 Results 

We have used Eqs. 9 and 11 with a as a fitting parameter to describe the da ta presented in 
Fig. 1. The solid line in Fig. 1 is the result of the calculation with a = 1.6 x 10~7 V.cm. 
The theory describes the measurements well. The factor a is only 40% higher than the value 
calculated according to Eq. 4, which is in good accordance with the theory described in the 
previous section considering the simplifications we were forced to make. 

The shaded part in Fig. 1 represents the contribution to AVt due to the energy gap between 
the first allowed energy level and the bottom of the conduction band. The remainder is the 
contribution due to the finite distance to the interface. This clearly shows that the incorrect 
simulation of the long-channel threshold voltage is mainly due to the splitting of the energy 
levels and to lesser extent to the finite distance to the interface. 

In conclusion, we have shown that quantum-mechanical effects need to be taken into account 
for the calculation of the threshold voltage of deep-submicron n-channel MOSFET's . We have 
further proposed a simple analytical expression for the first-order correction for the calculation 
of long-channel threshold of MOSFET's with high levels of channel doping. 
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