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Abst rac t 

An automatic device characterization tool was developed. This tool chooses bias points 
automatically adapting itself to nonlinearities for simulation of semiconductor devices and 
builds up a table for interpolation. This table can later be used for fast calculation of device 
behavior instead of invoking the simulator during device parameter extraction. 

1 Introduction 

Shrinking the semiconductor devices requires accurate investigations by means of simulation. 
Numerical modelling was first suggested by Gummel [1] in 1964. Since that t ime numerical 
semiconductor device simulators have become well-known and widely used. Today semicon­
ductor device development without simulation is unimaginable. The daily work of an engineer 
using simulators is to produce input for the simulators, run them and read and interpret the 
results. This work contains a lot of tedious actions and significant research is done nowadays 
to automatize it as much as possible. 

One approach is to build device characterization tools that calculate the characteristics of 
a device using simulators over a given region of input parameters by automatically adapting 
itself to the nonlinearities and building up a table. This table is used later for interpolation. It 
can be used to derive basic device parameters or applied in circuit simulators [2]. Such a tool 
was developed using a two-dimensional algorithm. It has been applied for MOSFET simulation 
using the simulator MINIMOS [3]. 

In this paper a procedure is detailed which creates the interpolation table automatically. 
First a one-dimensional algorithm is discussed in section 3. This algorithm is extended for 
two dimensions in section 4 and experiments were made using this algorithm using the MOS 
simulator MINIMOS. 

2 Requirements for automatic table generation 

The requirements can be grouped into two categories: the conditions that automatic device 
characterization needs, and what it should fulfill. 

The automatic table generation needs a simulation environment where it is possible to start 
a simulation automatically for several bias points. This requirement is fulfilled by the VISTA 
system [4]. 

The requirements for the automatic table generator are the following: 

• The bias points, for which the simulator is started, should be calculated automatically. 

• The points that are simulated should cover the bias domain dense enough to enable 
accurate interpolation. 
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• The points should be more dense at nonlinear regions and sparse at linear regions. This 
way the interpolation error does not depend on the location and is lower everywhere than 
a given limit. 

• The storage of the result of the simulations should be compact. 

• The structure of the points should be suited for a fast interpolation tool. 

• The different bias points should be simulated in an order that the result of previous 
calculations can be used for the initial solution estimation in the next simulation step. 

• Bias points which are computationally cheap (low voltages) should be calculated first and 
initial solution extrapolation should be applied for the higher voltages. 

• Parameters should easily be estimated 

3 One—dimensional mapping 

The one-dimensional algorithm is similar to the algorithm published in [5] with some extensions. 
A function / : R >-> R can be defined with a finite number of points (xi, f(%i)), (x2, f(x2)), • • •, 

(z n , / («„)) within an interval. The slope of the function in [a:;, a;»+i] is 

/(s»+i) ~ / ( * 0 m 

s. - . (XJ 

The nonlinearity of the function at the point xi is defined as 

di~ S{ - S i _ i . ( 2 ) 

The definition of the resolution is 
a = maxdj-. (3) 

»=2 

Using this definition the resolution is strongly linked with the error of the interpolation based 
on the points {xu / (aii)), (x2, f(x2)),..., (xn, f(xn)). 

To characterize a device with one free parameter (like drain voltage) one should specify the 
range of the characterization (i.e. minimal and maximal value for the parameter), the required 
resolution of the mapping and an estimated value for the average size of an interval A. The 
algorithm: 

1. Calculate the function at the points XQ — xmin, x\ = xmin + A and x2 = xmin + 2A. 

2. Set i = 1. 

3. If di > a then the last interval was too long, refine it calculating a new point inside. 

4. Estimate a new value for A according to the nonlinearity of the function at the point X{ 
using the expression 

Cx 
Aneuj — T ' "old- V.4J 

di 

5. Set i = i + 1 and a;,- = ai;_i + A. 

6. If £,- < xmax calculate f(x{) and go to 3. 



401 

Figure 1: Definition of nonlinearity 

During experiments it turned out that some refinement of the algorithm above is required. 
These refinements do not effect the base of the algorithm and the adaptation of the step size due 
to nonlinearity. To avoid infinite shortening of A due to numerical inaccuracies of the simulator 
we denned a minimal value Xmin- A function being almost linear near the point xmin causes 
the problem that the calculated value of A after the third step is too high. We introduce Xmax 

that stands for the maximal allowed value of A. As the above algorithm does not calculate 
the f(xmax), the interpolation is inaccurate for points being larger than the last calculated. 
Therefore the value f(xmax) is always calculated, and if xmax - X{ < Xmin then £; is set to xmax 

at point 6. The program does not use the value of A as input but the approximated number of 
the required points N. The calculation of A is defined by the expression 

K 
N 

(5) 

The value of K is an arbitrary positive value in the order 0(1). It is to note that for functions 
which are almost linear around the point xmin a value of K > 1.0 fits, and for functions which 
are strongly nonlinear at the start K < 1.0 is better. 

The algorithm is very sensitive to the value of a and specifying a too low value causes too 
many points to be calculated. As an extreme case [(xmax — a;mt„)/Amin] + 1 points will be 
calculated for a = 0.0. Fortunately we do not use the one dimensional algorithm alone and the 
two-dimensional case gives the possibility to eliminate this weakness. 

4 Two-dimensional mapping 

To map a function f(x,y) on the domain xmin < x < xmax and ymin < y < Vmax using the 
one-dimensional algorithm one can define some g: [zmin, zmax] h-> R2 functions and apply the 
algorithm for the composite function h(z) = f(g(z)). The function g(z) = (x • g(z),y- g(z)) 
defines a curve on the domain. The simplest way is to choose functions of the form 

g(z) = (Axz + Bx,Ayz + By) 

where Ax,Bx,Ay,By are constant values and 

\xmin •£>x)Ay — \ymin "yj-^-3 

(6) 

(7) 
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holds. In this case the curves defined by g(z) are straight lines including the point (£„,,„, t/m;n). 
Without loss of generality we can assume that for any zi,z2 € (zmin, zmax) the expression 
(zi — Z2)2 = \\g(zi) — ^(22)|| is true. This scaling is useful when the two axes have the same 
dimension (voltage in our experiments). In other cases one can set the values of zm,-n and zmax 

to 0 and 1 respectively. 
We say that two such lines g\ and g2 are neighbour lines on a subset of the set of this type of 

lines if there is no line g$ in the subset for which AxiAX3 < AyiAy3 and Ax^Ax2 < Ay3Ay2 holds 
assuming Ax\Axi < Ay\Ay2. {Avi means the Au coefficient for the function <̂  and u stands for 
x and y.) 

The algorithm of the 2D mapping needs TV, the number of the required points, the values 
Zmin,%max,ymin,ymax and estimated values of a for g\ and g2 as input. The algorithm is: 

1. Calculate the value of A. (Detailed later.) 

2. The first two lines of the mapping be 

g-i(z) = (xmin,z), z £ (ymin,ymax) (8) 

g2{z) = ( z , ymin) , Z € {Xmin, Xmax) . (9) 

Map the lines using the one-dimensional algorithm, and after mapping calculate values 
for a that would have been the best for the mapping. Set i - 3. 

3. Search neighbouring lines g\ and gu for which there is 

z c (niax(.2mjn(, zrnink ),min( 
)) (io) 

that 
\\gi(z) - gk(z)\\ > (3X. (11) 

Let 
gi{z) = (Axix + Bxi, Ayiy -V Byi) (12) 

where 

r* = ^(iv, + r„fc) (13) 

and T and v stand for all possible combinations of A, B and x, y. If there are no such lines 
then stop. Set zm jn so that 

\\gi{zmin ~ 9k(Zmin)\\ = /3A (14) 

and set zmax so that 

Zmax = max{z: x • gi(z) < xmax A y-gi(z) < ymax}- (15) 

Set 

ai = -(ai + ak). (16) 

Map the line gi using the one-dimensional algorithm, and after mapping calculate a value 
for cti that would have been the best for the mapping. 

4. Set i = i + 1 and go to 3. 
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Figure 2: Geometry of calculated points 

One can see that following the instructions the geometrical place of the lines is determined 
by the values of xmin,xmax,ymin,ymax,X and /3. Therefore the total length L of the lines can 
be calculated, and a function 

L = 7(A) (17) 

can describe the relationship. One can also see that 7(A) is monotonically decreasing. On the 
other hand if the total length of the lines L and the number of the expected points n are known, 
the average step size I, can be calculated. 

/, = L/N 7(A) 
N 

(18) 

Assuming that the distance between neighbouring points should be approximately the same on 
one line and between neighbouring lines we can say that the value of A and ls should be the 
same. Putting equations (17) and (18) together we get an equation 

N 
(19) 

which can be solved iteratively. The value of /3 in equation (14) is an arbitrary constant value 
around 2.0. 

In steps 2 and 3 we calculate a values for lines that are already mapped. In this action we 
know the length of the line and the expected average interval length l3. These two values define 
the expected number of the points on the given line, n. If we have less than n points, we just 
take the resolution of the curve. If the number of the calculated points k is larger than n, the 
used a value was too small. In this case we calculate the resolution of the line according to 
equation (3) neglecting those k - n points for which the value d{ is the highest. This resolution 
value gives an approximation for a that would have been good for the mapping. We use these 
values in equation (16). The only exception is the calculation of 03 that should not follow this 
equation because gi and g2 are orthogonal. 
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5 Interpolation 
The interpolation in one-dimension can be done using arbitrary scheme. Using the a-priori 
knowledge that the function is monotonic one can for instance use monotonic spline interpolation 
as it is suggested in [2]. 

The 2D interpolation is based on some one-dimensional interpolation. To interpolate a value 
for the point (x,y) we should examine the lines 

gx(z) = {x,z) (20) 

and 
gy(z) = (z,y). (21) 

Unless x = xmin the set Sx = gx U g\ U . . . U gn has only finit number of points. Similarly if 
y 7̂  ymin the set Sy = gx U g\ U - . . U gn is finite. Choose the line gv if \SV\ > |5"n|. Calculate the 
value of the function / at the points Sv using one-dimensional interpolations along all lines gi 
for which gu U gi ^ 0 and using the line gv interpolate a value for f(x,y) based on the points 
S„. 

This interpolation produces a smooth surface over all the domain except for the region where 
\SX\ = \Sy\. In this region the interpolated function has discontinuities because the direction of 
the interpolation changes. However it is to note that these discontinuities are within the range 
of the error of the interpolation. To remove these we build up an equidistant dense mesh over 
the domain and later we use this mesh to interpolate. For each point of the mesh we use the 
interpolation described above and when the mesh is ready we apply a 2D low pass filtering to 
increase smoothness and remove discontinuities [6]. 

6 Results 

As a typical example we have applied the algorithm to simulations of strong inversion char­
acteristics of an N-channel MOSFET using MINIMOS. The boundary values were J7z)m,n = 
1.0F, Uomax = 8.OF, UGmin = 1.0V, UGmax = 6.OF. This boundary covers the normal operating 
region of a typical switching MOSFET for open state, but does not include the subthreshold 
region. To calculate the points of this region is enough for most of the parameter extrac­
tion tools. We have set the value of the expected points N = 200. The algorithm produces 
187 points. Extending the boundary to Uomax = 14.OF including the breakdown region the 
algorithm produces 195 points. 

As shown in Figure 3, the points are more dense at low drain voltages where the function 
ID{UD,UG) is nonlinear, sparse at the saturation region and dense at the breakdown region 
where the function is strongly nonlinear. One can see very dense points in the breakdown 
region. This was generated because the value Am;n was set too low and numerical inaccuracies 
forced the algorithm to decrease X down to Amin. 

Our experiments show that the value of AT in equation (5) should be around 1.5 for simulation 
of MOS transistor strong inversion characteristics with Up or UG as parameter and xmin ss Uth-
In the example that is shown in Figure 3 the value K — 1.61 was used. 

To check the error of the interpolation we calculated a 0.2V equidistant mesh over the larger 
area using the simulator and compared it to the interpolated values. The relative error of the 
interpolation is below 2% everywhere on both of the domains. This error is small enough for 
any practical purpose and the simulation can be replaced by table interpolation. 
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Figure 3: MINIMOS simulation, 195 points 

7 Conclusion 

In this paper we have described a method to characterize devices automatically. The characteri­
zation covers a two-dimensional domain and so the algorithms described in [5] are extended from 
"Curve-Tracer" into "Plane-Tracer" mode. The algorithms support initial solution estimation 
for the device simulator and this improves the simulator convergence. The method produces 
a data structure that can be used for interpolation of scalar or distributed physical quantities 
with good accuracy. The number of the required points is low taking into account that the 
simulation time can radically be reduced by the initial solution estimation. The algorithm was 
constructed taking into account the possibility of further multi-dimensional expansion. 
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