
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4
Edited by W. Fichtner,D.Aemmer - Zurich (Switzerland) September 12-14, 1991 - Hariung-Gorre

Parallelization of Monte Carlo Analysis on Hypercube
Multiprocessors and on a Networked EWS System

Satoshi Sugino* Chiang-Sheng Yao and Rober t W. D u t t o n
Integrated Circuits Laboratory

AEL 203, Stanford University, Stanford, CA 94305, U. S. A.
(TEL)415- 725-0458 (FAX)415- 725- 7298

Abstrac t
Comparison of Monte Carlo simulation on two different parallel computer architectures

has been made. The speed-up and communication times are summarized in analytical form.
The advantage of using parallel processing on the Intel hypercube architecture is shown
compared with the networked EWS system, especially when more than 32 nodes are used.
The performance of the 32 nodes on the hypercube machine is demonstrated to be about 1.7
times faster than that of a 32-EWS system. Moreover, because of the high data transmission
rate and hypercube connection, we have shown that the hypercube multiprocessor should
not exhibit performance saturation up to 128 nodes. For the networked EWS system the
performance falls off dramatically beyond the peak at 32 processors.

Using the Monte Carlo (MC) method for semiconductor device analysis is becoming a real­
i s t i c tool for device engineers[l][2](See Figure 1). The huge computational time, however, is one
of the main drawbacks for MC simulation. Although both the windowed method and coupled
Drift-DifTusion(DD) method have already been used for the Monte Carlo analysis, it still takes
m a n y hours even for a high-end workstation(See Table 1). Because of the intrinsic parallelizable
f ea tu re of the MC method, parallel computation offers the possibility of driving down not only
t h e computational time but also the cost.

Parallelized Monte Carlo simulation for semiconductor device analysis has been investigated
b o t h on hypercube multiprocessor machines and networked Engineering Workstation (EWS)
s y s t e m s . The communication issues between many CPU's and message passing timing are of
c r i t ica l concern in the parallelization process. In the present work, a parallel algorithm for
t h e MC simulation has been implemented into a self-consistent 2D simulator BEBOP[Z] and
developed on the Intel iPSC/860 hypercube as well as a networked EWS system. The main
f e a t u r e of these systems are summarized in Table 2 . The performance of the parallelized MC
simulat ion on both systems are compared. The speed-up and communication time are measured
experimental ly and generalized into analytical forms based on the parameters of the systems
u s e d .

1 Parallel MC algorithms

1 . 1 C o m m u n i c a t i o n s

In our MC experiment, when more than 10,000 particles are used, we can show that more than
9 8 % of the time is spent on the part that can be parallelized easily, which corresponds to the

* Visiting scholar from Matsushita Electric Works, 1048 Kadoma, Osaka 571, Japan.

Machine

sun spare 1+

sun4/490

Elapsed Time

669min/bias

401min/bias

Table 1: Monte Carlo benchmark.

Intel i860
processor

Memory
i860(64bit)x32

16 Mbyte/node
Sun Sparc station

^ ^ - ^ ^

processor

FPU

spare 1 +

15.8MIPS

(25MHz)

spare fpp
(25MHz)

server 4/490

22MIPS
3.8MFLOPS

(33MHz)

Tl8847
(33MHz)

Table 2: SUN SPARC computer & Intel iPSC/860.

CM
i

E
:T4e12 t

§3e12

°2e12j

£ 1e12i

M i l l I I I I I I I

0.0 nt 0.1
Distance
(urn)

Left: Average electron energy around drain.
Right: Associated interface defects at the Si-Si02 interface.

Figure 1: Relation of average electron energy and oxide interface defects.

calculation of movement and scattering of particles(hatched part of Figure 2). The remaining
Parts, for example, the Poisson solver and gathering the statistics results, are not considered to
be parallelized in this work. Instead of using the host computer with an i386 CPU, one of the 32
Nodes in the hypercube machine is used to do the nonparallelized parts of the MC simulation,
ifle host node(node 0 in our case) makes 4 different kinds of communication with the others.
One communication is to send global data which contains electric field and scattering table data
to other nodes. Another is to send back the MC results(such as the number of events for each
scattering mechanism) from other nodes to the host node. These two message passings are done
every time when the Poisson solver loop is called.

Inside the Poisson loop, the communication is made by sending and gathering particle-
associated data(position, momentum etc.)just before getting into and getting out of the parallel
MC procedure. The data size of these messages are 1.03 megabytes for global data, 100 kilobytes
'°r statistics data and 56 bytes per particle for the particle-associated data. The global data
Slze depends on the device structure, but the data size for each particle is fixed.

1-2 Load balancing

The other important issue in developing parallel algorithms is how to make the load on each
node balanced so that each node can finish its job at the same time. For MC simulation , if
Particles of the same amount are allocated in each node , it seems likely that the load balancing
can be achieved easily. In reality ,however, load balancing can't be achieved unless both of the
following conditions are satisfied. First, each node must have the same amount of particles.
Second, the initial spatial distribution of the particles inside the device must be the same for
each node. Figure 3 shows the NMOSFET structure we uses in this work. Figure 4 shows a bad
Sample of particle distributions. Under the condition of Figure 4, the number of particles are
equal for each node, but particles are allocated to the nodes with an order of the MOS channel
coordinates. Consequently it makes about a 5 times difference for the elapsed time between the
fastest node and the slowest one. In our MC algorithm, since the host node has to wait for all
n°des to finish their jobs in order to get back the new data, the computational efficiency of the
Parallel part have been seriously compensated by the slowest node. Figure 5 shows the results
*0r the modified, correct method. Only 5% of the elapsed time difference between the fastest
n°de and the slowest node is observed. The reason of these phenomena comes from the fact
^ a t the elapsed time is strongly related to the magnitude of the local electric field, which is
Used in the most time consuming part of the MC simulation so called "trajectories calculation of
Particles"; more than 65% of the elapsed time is spent here. This method should be considered
Seriously since the electric field may vary by several orders of magnitude inside the real device.

2 Parallel MC Systems
2 - l Intel i P S C / 8 6 0
ltl the present work, an Intel hypercube machine with up to 32 nodes is used for experimentation.
1̂1 the nodes in the iPSC system are fully connected and the message goes directly to the

receiving node without disturbing any of the other nodes through the Direct-Connect Module.
*t also offers a special method, the so called "global operation", to do the vector-like operation
between the nodes. Because of the hypercube connection, the communication time will be
reduce(i to a function of only the dimension of the cube size when the message is passed from
°ne node to all the others. For example, if we have 32 nodes in the cube, only 5 communication

Loading the BEBOP
I program to each node I

System Resources

Loading the mesh data
& the initial guess data
from PISCES IIB.

Initialize scattering prob­
ability table, electric field,
etc. if needed. D

Sending the global data
(scattering table, electric
field, etc)to each node
• 1.1 Mbytes

Receive the global data
from the host - node 0

Sending particle-associated
data(x, y, z, px, py, pz, etc.;
to each node- 56 bytes /

^particle

(2) Receive the panicle -
associated data from
the host - node 0

Other Nodes

Figure 2: The flowchart of the Parallelized MC method.

m

Source | Drain
- reqion / I region
"™ J \ n +

n<*>*:<<<<<<<u«#x<*K«t<*M&fr % i » w « « A • « * , w . ^ x <

•

—
-
-
•

•

—
-
•

-

• • • • • 1 • I 1 I 1 • 1 1 • 1 1 . . . 1 1

m

•

•

•MMMM

-
—
-
-
-
-

—
-
•

-

0.0 0.1 0.2 0.3

Distance (^m)

0.4 0.5

Figure 3: The NMOSFET structure.

2 0 0

I S O

too

3 0 mil
ifliiffllll

C o m p u t a i l M u

H O -

l O O -

3 0 —•

o.a
1 H m . l a « . s a

o jill. h 11

C — a u m h — l l i m a i a 3 2 . 4 i

2 0 O

I S O

l O O

SO

""•fTflj *

0 . 2
C o m p u u i l o n a l t i m a i i a 2 3 . S a

Z O O ,

I S O

l O O

so

°.
C o m p u t a t i o n * ! Unrva i» 3 1 . 4 i

taatm g

: ol;JI oU "
> OT2 0 . 4

I S O -

l O O . . .

so -••

o 0 .2
(:<> i i i | i . i t aLi<m»l t i m a i a 3 0 . 2 a

200 (! frf TTfaa ft

I S O

l O O

SO

" o 0 . 2
C o m p u u t l a a « l t i m a la 1 3 . 7 P

l O O

I S O

l O O

so

o.

° 0 . 2 O.-t
C o m p u u d a a a l t i m a i a 3 2 . 4 •

^

o.a o^~
p u t A d o t u d t i m . ! • <S.3 •

Jlkm

F i g u r e 4: The spatial distribution of particles along the channel in each node: bad example.
X axis—Position in /zm from the source end. Y axis—Particle number.

280

40

30

20 ...

IO

40

30

20

IO

Nolm O

l i i i i< : l i l i l l l l ! l„n

C o m p u t A d o i u J
0 . 4

i i m « 1 . 2 2 . 3 1

ill

rj<xd» 3

. 1

i in
nJI,iill

II
1
liii

0 . 2 o . *
C o m p u l a l l o n a] H m » l a 2 2 . 5

4 0

S O

2 0

I O

AO

S O

2 0

I O

y..""Tl!!fc

N o d . 1

rij
0 . 2 0 . 4

C o c n p u t a U o u a l t l m a i s 2 2 . 9

0 . 2 O.A
C a c n p u u t l o a a l t l x n « i s 2 2 . 5

N o d . 5

0 . 2 0 . 4
C a i n p u u t l o m l rtwr»» i s 2 2 . 5 1

Figure 5: The spatial distribution of particles along the channel in each node: good example.
X axis—Position in /xm from the source end. Y axis—Particle number.

281

Experiment condition:
21 time steps
1 Poisson iteration
global data size: 1.03 Mbytes
particle data size: 56 bytes / particle
10,000 particles
98.25% are parallelized

time
SPARC1+
4042.3sec

SUN4/490
2672.7sec

1 nodes
3956.5sec

32 nodes
201.42sec

Table 3: Comparison of the performance on iPSC/860 and SUN computers

messages are necessary instead of 31 times in an usual way. The global operations also use this
kind of communication for their operations.

2 . 2 Networked EWS system

Network programming of the parallel version of MC simulation has been carried out using SUN-
RPC(Remote Procedure Call) language and remote execution commands provided by 4.3 BSD
UNIX[5]. In a remote procedure call, a process on the local system invokes a procedure on a
r e m o t e system. RPC makes it appear to the programmer as if usual subroutine calls are taking
p l a c e . The network is established by Ethernet with the TCP/IP protocol. Four SPARC 1+
workstation with 24 megabytes memory and nine SPARC IPC with 12 megabytes memory have
b e e n used for this experiment. Here mainly the communication time between workstations and
C P U time for MC on one CPU are measured in order to get an analytical form for the networked
E W S system.

3 Comparison

3 . 1 One EWS vs. iPSC/860 Hypercube

T h e results are summarized in Table 3. The performance of MC are compared with the com­
puta t ional time per single CPU. The speed-up for 32 nodes is observed to be nearly 20 times
f a s t e r than that of a single i860 CPU and 13 times faster than that of the SUN4/490 SPARC
se rver and 20 times faster than that of one SPARC1"1".

3 . 2 Networked EWS system vs. iPSC/860 Hypercube

T h e performance difference between the networked EWS system and the hypercube machine
becomes obvious as expected when more than 32 CPU's are used. For the 32 node case, the
simulation time on the hypercube machine is about 1.5 times faster than that of the networked
E W S system. Furthermore in the case of networked EWS system , we cannot expect to see more
s p e e d up even if more workstations are added to the network. These speed up performances
a re summarized into analytical form in the following section.

282

4 Analytical formula of Performance on both Systems

In order to compare the performances of these two systems, we have generated a simple ana­
lytical form of the elapsed time for both systems. Two assumptions are made here:

1. Each node spends the same computational time.

2. There is no da ta collision between nodes for message exchange.

Actually the second assumption is based on the first, as now explained.
The only place that da ta collision will occur is when the nodes send back the new particle-
associated data to the host node. Because the original particle-associated data is sent to each
node serially, the node that gets these data first should finish its computation and send back the
data to the host first (Assumption 1). Based on these two assumptions and under our experiment
condition, we get the following analytical form of the performance on the hypercube machine:

r = (2 ^ 2 5 + 0 .0175)^ (1)

+ 0.77 x log2N

+ 0.09 x log2N (seconds)

In the above equation, N is the number of nodes, 7\ is the elapsed time spent by one CPU—the
list two terms are simply the elapsed time predicted by Amdahl's law[4]. The third term shows
the communication time for sending the global data to the nodes, which is only a logarithmic
function of the cube size. The fourth term is the message passing time for exchanging the
particle-associated data between the host node and the others which is essentially a constant
when N > 1. The last term is the communication time needed to do the "global operations".

In a similar way, we can also obtain the analytical form of the performance on the networked
EWS system:

r = (°-^P + 0.0175)7\ (2)
+ 2.8 x (N - 1)

3 5 - 6 4 ,*T IN
+ — x (i V - l)
+ 0.125 x (A r - 1)

+ 1.2 x (N - 1) (seconds)

The first four terms have the same meaning as equation (1) except the larger communication
time is due to the lower data transmission rate and the Linear dependence on the size of the
networked EWS system. Because there is no "global operations" in the networked EWS system,
the fourth term of equation (2) is simply the message passing time from the remote system
to the local system. The last term is the time needed to invoke the remote system procedure.
Comparing these two equations we can find that the performance of the networked EWS system
will soon be saturated because of the large communication time spent on transmitting the global
da ta and statistics results.

283

Seed Up vs. Number of CPU

100 1000

Number of CPU

Figure 6: Comparison of the speed up for the ideal case and real cases.

284

5 Summary

Comparisons have been made between Intel iPSC/860 and the networked EWS system. The
importance of communication time is clearly shown. Although one SPARC1+ has almost the
same performance as one i860 CPU for our MC simulation, the hypercube machine has better
performance than the networked EWS system when more than 32 CPU's are used. For our
MC simulation, the performance on the hypercube machine will not be saturated even using
128 nodes in contrast to the networked EWS system. The reason comes from the higher data
transmission rate and the method of communication for the hypercube connection which is
shown in equation (1). On the contrary, even though the networked EWS system has more
than 32 workstations, its performance will be degraded by the communication time between
the CPU's instead of the computational time. The comparison is shown in Figure 6. We can
see that the maximum speed-up of the networked EWS system is for 32 CPU's and we can get
70% of this peak speed-up using 13 CPU's. To achieve 90% efficiency compared to the 32 node
case, 24 CPU's must be used(apparently a high penalty compared to the 70% case). We can
say that about 20 workstations in the networked EWS system is the optimized choice for this
particular MC code and the present communication limits.

6 Acknowledgements

The authors would like to thank Samsung Electronics of Korea for the research support and
Software Intelligence and System Technology Office(SISTO) of DARPA for providing the hard­
wares.

References

[1] F.Venturi et al. , IEEE trans, on CAD, vol. 8, p. 380, 1980.

[2] S. Sugino et al. , IEDM Tech. Dig., p459, 1990.

[3] "BEBOP"—MONTE. CARLO SIMULATOR (University of Bologna).

[4] John L. Iiennessy and David A. Patterson, "Computer Architecture: A Quantitative Ap­
proach", Morgan Kaufmann Publishers, Inc., 1990.

[5] W. R. Stevens, "Unix-Network Programming", Prentice Hall, 1990.

