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Abstract 

An autoadaptative mesh refinement method is described. Using a Box 

Method discretization scheme, we compute a local error arising from the 

difference between the physical and the discretized problem. This error 

indicates where the mesh must be refined. The refinement strategy is 

applied to the simulation of several semiconductor devices, including 

III-V optoelectronic devices. 

The autoadaptative mesh refinement method is closely related to the 

discretization scheme used. On the other hand, the discretization scheme has to 

be adapted to the physical equations when simulating the electrical properties 

of today devices. An overview of the physical model is briefly made, in order to 

precise the type of mathematical expressions that the discretization scheme has 

to deal with. Then, the discretization scheme and the proposed autoadaptative 

method are presented. 

1 PHYSICAL MODEL 

Steady state electrical conduction in semiconductors is basically described by 

the three following equations (Poisson equation and the two continuity 

equations) : 

1 . . -r+ 1 
(1) div{e-grad <p) = q-(n - p - dop) ; - --div j ' = - V ; — div J0 = - V 

1 q p 

With dop the doping level, <p the electrostatic potential, € the dielectric 
constant, n and p the electron and hole free carrier densities, expressed within 
Fermi-Dirac statistics. The drift diffusion currents Jn and Jp are [1] : 

(2) Jn= - q-n-^n-grad <pn ; Jp= - q • p • ̂  • grad <pp 
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where <pn and <pp are the electrochemical potentials. These expressions are valid 

in both homo- and hetero- structures [1]. The electron and hole mobilities /i,n 

and jip are expressed within a field dependant mobility law, such as [2] : 

(3) Mn = 
/"no 

Pp 

1 + |grad <pn 

^ 0 

Mp0 I » | 

1 + grad <p„ 
'ps 

where Mn0 and ^ 0 are the low field mobilities, vns and vps are the saturation 

velocities. The U term can include many recombination or generation mechanisms. 
The more usual are the Shockley-Hall-Read (SHR) deep level thermal recombination 

generation, Auger recombination, spontaneous band to band recombination, which 

only depend on local carrier concentrations. For example, USM/} writes [1] : 

CO 

n-p 1-exp q 
k-T 

JSHR T.p-(n + nj) + rn-(p + p, 

where rn and rp are the extrinsic carriers lifetimes. 

Other generation mechanisms, such as the impact ionization are field dependant. 

The impact ionization generations, Gin and Gip, due to electrons and holes, are 

given by : 

(5) G4. —a„ £1 •ip - — o c r V, 
The ionization coefficients <x.„ and 

potential dependant 

fields 

the energy of 

<Xp are field dependant and not merely 

the carriers is a function of the driving 

q-grad <pn for the electrons, and q-grad <pp for the holes. Thus, the 

ionization coefficients are expressed as : 

(6) an = ano'eXP 
, |grad <pn\t 

*P <x, po •exp I * l 
I, jgrad <pp\) 

Therefore, when describing a field dependant mobility law (3), or an impact 

ionization model (5), (6), fields and currents must be precisely computed at the 

nodes, with an appropriate centered formulation. 

2 RESOLUTION METHOD 

We consider that the potentials {<p, <pn, <pp) are the fundamental entities 

describing the device state. So, this leads to a natural choice of unknowns 

{<p, ipn, (pp) for the set of equations (1), which can be written as : 



» 
d i v ( € - g r a d <p) = q-( n{<p,<pn) - p(<p,tpp) - dop{<p,<pn,<pp) ) 

( 7 ) \ div( 

div( pC^.^p) -M-P(<PP) -grad ^ p ) = y(^ ,^ ,^ p ) 

with appropriate boundary conditions. This general formulation has been derived 

from (1) independently of the mobility law, of the Recombination-Generation term 

and of the statistics (Maxwell-Boltzman or Fermi-Dirac) used. So, the equation 

set (7) is adequate to describe a wide range of semiconductor devices including 

III-V optoelectronic devices. 

The domain of definition Q of the set of equations (7) is a bounded domain 

belonging to Kn, (n<3) • The boundary of the domain, V = dfl, is divided into 
classes, each of them corresponding to a given boundary condition type (ohmic 

contact, Schottky contact and insulating boundary ), 

2.1 Discretization scheme 

The general form of the equations in (7) is of the type : 

(8) div a-grad f = b . 

This equation is discretized using the general frame of the so called "Box 

method" [2]. A finite differences type notation together with a rectangular box 

Q i j surrounding the node (i,j) is used to survey the method (figure 1). After 

discretization over the box Qi j , equation (8) writes : 

(9) 2 [ Jy/>i.,••*"*/•"*• dyj = JJQ. fi.jlf)- <& 

where m is the number of boundary elements, n^ is the unitary vector normal to 

the boundary element Yk . 

The two fundamental basic hypotheses of the discretization scheme are : 

• the scalars a,- ,• and b,- ,• are constant inside the box Q- ,•. 

• the continuity of the normal componant a-grad f-n of the flux density vector 

is imposed at each boundary of box Qt j . 

In the case of a rectangular mesh, the box is divided into eight rectangular 

triangles, so that the / potentials plane by triangular subdomain satisfy the 

above mentionned hypotheses (figure 1). The quantities with subscripts (i+H,j), 
(i-'4,j) , (i.j+'-i) and (1,$-%) are deduced from the nodal values according to the 

interpolation formulae derived from the discretization hypotheses. For example : 



228 

Figure 1 : a rectangular box divided into 8 triangles 

used in the discretization scheme 

Figure 2 : configuration of a box arising for the description 

of boundary conditions 

Figure 3 : configuration of a box arising at a terminating line 



( 1 0 ) a-eradf\.tii.-nitiij = 2 -
't.J ui*l.j fi*-i,J " fi.j af ,-a. 

l*i.J + ai*x./) hi 

Field dependant mobility laws and impact ionization need the computation of the 
quantities jgrad <pn\ and jgrad <pp\ , as well as the currents densities, at the 
nodes. These expressions, at the nodes, are obtained by interpolation, using the 
discretization scheme. Owing to (10), the field of the potentials /, in the i 
and y directions, can similarly be expressed : 

(11) grad x / i (, • 1 L_>» > I >< J 
V i 

(12) g r a d ^ §i 

(ai.J-V| \. " 1" *•/ + ai.^H'l "I ""I" ty-1 
k j i j -v -..,•, ̂  ^ 

toi-,M-,ki + ai.7M-^-i) 

The general case uses a "finite boxes" type mesh [3] allowing geometrical 
description facilities (figure 2) and local refinement (figure 3). 

2.2 Resolution 

The numerical resolution is classical. After discretization, the equation set is 
linearized and solved using a Newton-like method [4] : 

(13) [*]•*/ = B 

where 6f is the correction vector of the solution (<p, <pn, (p). 

Using this discretization scheme, the method is particularly robust even for 
very poorly adapted mesh. This robustness, due to the interpolation formulae 
used in (10), allows to obtain an approximated solution in order to refine the 
initial coarse mesh, until the final mesh-solution satisfies a prerequired 
precision. 

3 AUTOADAPTATIVE MESH REFINEMENT 

The refinement is performed by an autoadaptative method. One of the most 
important point, when dealing with such a method, is to be able to exhibit and 
evaluate a mesh refinement criterion [5]- The refinement criterion we have 
developped is computed using an estimation of an error arising from the 
discretization scheme. Physically, in equation (8), the terms a and b are 
functions of /. In semiconductor, continuity equations, the discretization error 
is rather due to the a and b large spatial variations, than to the usual Laplace 
discretization error. The error computation is local. It uses an a posteriori 
estimation of the distance tf/4 J between the computed solution /f j and the 
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unknown physical solution, within the box Qt j . 

3-1 Refinement criterion computation 

Let us consider the b term. The discretization scheme is built on the hypothesis 
that bi ,• is constant over the box ft,- ,• . The error committed with this 

hypothesis is evaluated. For this, the physical spatial variations of b are 
linearized leading to eight plane functions in the box A; j. In the patterned 

triangle a>t (figure 1), linearization leads to : 

(1*) 
db 

(x " ij 
db 

ay 
(y - y/, 

Taking into account the contributions of each of the eight triangles u>t, we 

build 6bi j , the error on the evaluation of the right member of (9) : 

(15) 6b * ,J 

8 

t = i 0) tx 

db 

dx 
(x - Xi) 

db\ 

dy\ 
(y - yj) dxdy 

Owing to (13), the error 6fb, ,, contribution of b to the error &ft • is : 

(16) {At_^ j+ AUH j+ At JtH+ At j^-sfi j = Sbt j 

In order to compute <5/f • , the method takes full advantage of the geometrical 

properties of the rectangular bidimensionnal mesh ; the function b(f) can be 

computed at the neighbouring nodes of (i,j), since / has been computed at these 

nodes. 6bt j needs to be computed and thus also the derivatives of b . For 
example, in triangle 1 (fig. 1) : 

(17) 
db I 

3x1 
V bo 

and 
db I 

dy\ 

b2- b, 

where : (18) b, = bitJ{fit%tJ) and (19) b2 = bt j(fuHi Jtii) 

Finally with the projections of 6bt • over the two coordinate axes, four 

contributions to the error 6f\ • are derived and expressed at the four boundary 

points of the box fii • : 

(20) 

<*., r 

s/6 = 

st>xi,J 

A ,• u „• 

Sblj 

sbxi.J 

s r - .. "Ji-*.J Ai.H.j 

i.J-% Aitj-% 

Similar errors are obtained for the a term in (9). 



3-2 Mesh refinement strategy 

At two dimensions, the projections (20) over the coordinate axis permit to 
indicate in which direction the error contribution is the largest. In a given 
direction, the refinement strategy lies on the symmetrization of the mesh step. 
In one direction, the first order spatial discretization errors of the terms a 
and b are null, when the node is at the center of the box, and the computed 
error is the second order error. The simplified refinement algorithm is : 

- Compute the error 6fi • in the box Qi •. 

- IF l<5/- I < then prerequired mesh-solution precision is reached. 
•J a 

- ELSE 
- IF fi£ • is non-symmetrical in the direction of the largest error then 

- refine so fi^ • becomes symmetric in the concerned direction. 
- ELSE 

- 6fi j is the second order error then 
- refine in the direction of the largest error. 

- END IF 
- END IF 

The action of refine consists in dividing by two the concerned step. 
This strategy allows to implement an efficient autoadaptative anisotropic mesh 
refinement method. 

4 APPLICATIONS 

The bidimensional simulator has been used for a scholastic Si p-n junction. The 
mesh and the electrostatic potential are reported {figure 4) after a few 
refinement cycles at thermodynamical equilibrium. The initial coarse mesh had 
6x6 nodes uniform distribution. The refinement has occured in both directions, 
in relation to the curvature of the electrostatic potential. This "Finite Boxes" 
mesh [3] allows an efficient local refinement method. 

The second example deals with a ID GaAs Field Effect transistor short channel 
under ^>V bias. Figure 5 shows that refinement has occured according to the 
negative and positive peaks of fields and velocities, particularly, as it could 
have been expected, in the saturation region. 
The behaviour of heterostructures encountered in III-V optoelectronic devices is 
far less predictable. Figure 6 shows the band structure of a GalnAs/InP isotype 
ri-n heterojunction under 2V bias. These heterojunction are encountered in many 
of the optoelectronic devices such as APD or Laser diodes... The location of the 
nodes of the refined mesh is shown. The initial mesh had only three nodes. Such 
an autoadaptative mesh generator is essential to describe such unpredictable 
mesh for III-V devices made of heterojunctions [6], 
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Figure 4 : electrostatic potential 
map over the refined mesh. 
(Si p-n junction) 

V ( 1E+0? cro/s) Field ( 1E+05 V/cm) 

1.7 2.0 
10-4 cm 

Figure 5 : field and velocities 

with the locations of the nodes 

aftermesh refinement. 

(GaAs FET channel, 5 Volts bias) 

3.0 

2.0 

0.0 • 

Figure 6 : band structure and 

locations of the nodes 

after mesh refinement. 

(GalnAs/InP n-n heterojunction 

under 2 Volts bias) 



5 CONCLUSION 

In the semiconductor devices simulation physical model, we stress on two 

different features : the equations have a common form and include fields and 

current at the nodes. We then show how a discretization scheme deals with these 

two features. This scheme allows the computation of the associated error, 

criteria of a refinement method and to its autoadaptative implementation. It 

also yields great robustness to the solving method. Refinement and robustness 

permit the simulation of the devices we were first concerned with. 
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