
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4 
Edited by W.Fichtner,D.Aemmer - Zurich (Switzerland) September 12-14,1991 - Hartung-Gorre 

New Developments in Iterative Methods for Device Simulation 

Claude Pommerell and Wolfgang Fichtner 
Integrated Systems Laboratory, ETH-Zentrum, 8092 Zurich, Switzerland 

Abstrac t 

We have investigated the performance of a variety of new algorithms for the solution of 
large systems of linear equations arising in multi-dimensional numerical device simulation. 
These algorithms include novel techniques for preconditioning and equation solution that 
are particularly suited for very ill-conditioned problems where conventional methods fail. In 
our software implementation, they can be combined in a modular fashion, permitting even 
an automatic way to solve a particular problem. As most stable algorithm, a special variant 
of CGS called Bi-CGSTAB, together with a new ILU drop tolerance preconditioned shows 
particular promise in handling even the worst-case problems. 

1 Introduction 

F o r complex multi-dimensional simulation problems, the solution of the linear system of equa
t i o n s lies at the heart of the overall computational burden. The choice of an optimal solution 
a lgor i thm will largely depend on the properties of the matrix corresponding to these systems 
a n d the size of the problem itself. In most interesting device simulation problems, these matrices 
a r e nonsymmetric with huge condition numbers. Linear equations solvers based on a variant of 
Gauss ian Elimination, possibly augmented with some kind of pivoting, have enjoyed enormous 
popular i ty for these situations. Once the problem size leads to linear systems of 10k or more 
unknowns , however, memory considerations preclude the utilization of direct schemes. 

In this paper, we present information on several new algorithms together with some rep
resenta t ive results on the implementation and performance of a software package developed 
specifically for the iterative solution of badly conditioned systems arising in device simulations. 
W e have tested conventional Conjugate Gradients methods as well as all significant extensions 
t o nonsymmetric systems, including recent developments such as Bi-CGSTAB [1] or QMR [2]. 
O u r tests include a whole set of preconditioners with differing storage and timing costs, suited 
fo r moderately to strongly ill-conditioned systems. 

2 A new iterative method: Bi-CGSTAB 

T h e linear systems that arise in semiconductor device simulation are known to be very ill-
condit ioned. Many of the iterative methods that have been proposed to solve unsymmetric 
s y s t e m s fail on these problems [3,4]. Even GMItES [5], a method tha t many authors recommend 
a s the best iterative solver for unsymmetric systems, cannot solve most of our linear systems 
t o the accuracy needed for the outer nonlinear solver. The full curve in Figure 1 shows the 
convergence history of GMRES(IO) for a moderately ill-conditioned problem. The residual 
n o r m drops only very slowly after fast initial convergence. In this case, unrestarted GMRES 
w o u l d reach higher accuracies in reasonable time, but at unreasonable storage costs. 
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Figure 1: Evolution of the residual norm in the iterative solution of a typical, moderately ill-
conditioned linear system. The linear system has 46,692 unknowns and occurs inside the coupled 
nonlinear solver in the simulation of a trench DRAM cell on an irregular 3-D grid. This 
figure shows the behavior of the new Bi-CGSTAB method as well as the well-known methods 
GMRES(IO), BiCG, and CGS, all with right D-ILUpreconditioning. 
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GMRES has the desirable property that it improves the residual at every single iteration. 
T h e rate of convergence, however, can be very slow, and sometimes gets stuck even completely. 
Other methods, like CGNR, Orthomin [6], or row projection methods [7], showed a similar 
behavior. The only methods that do succeed in solving our linear systems come from the family 
of biorthogonalization methods [8, 9], which includes Biconjugate Gradients [10] and its variants. 

The BiCG method has no global minimization property. This means that the residual does 
n o t converge in every single iteration; some iterations can increase the norm of the iteration. 
T h e algorithm can still converge to a small residual and thus to a good approximation of the 
solution if there both some converging and some diverging iterations. In that case, the plot of 
t h e convergence history has local peaks. We call this the zigzagging effect in BiCG. The dashed 
curve in Figure 1 shows the zigzagging effect for BiCG. 

The basic idea behind the CGS method [11] is to square the matrix polynomials used inside 
BiCG. This works out well when BiCG converges: CGS is sometimes almost twice as fast. The 
pitfall of the squaring shows up in iterations where BiCG diverges: CGS usually diverges up 
t o twice as much in the same iteration. The dotted curve in Figure 1 shows the convergence 
history of CGS for the same example. We can see clearly how the convergence and divergence 
in BiCG is amplified by CGS in every single iteration. CGS still usually converges faster to the 
requested precision even in the presence of diverging iterations. 

Bi-CGSTAB is a new method that has been proposed recently by van der Vorst [1], Bi-
CGSTAB is based on the same matrix polynomials as CGS, but instead of being squared, this 
polynomial is premultiplied by another polynomial. This second polynomial damps the effect 
of divergence in the BiCG polynomial. For convergent BiCG steps, the second polynomial 
increases convergence effect in a similar way to the squaring in CGS. 

The dash-dotted curve in Figure 1 shows the convergence history of Bi-CGSTAB on our test 
case. There are still small peaks left which are due to divergence in the BiCG process, but the 
method shows a much smoother convergence behavior. 

3 A new preconditioner: numerical dropping 

Even with the best iterative schemes, convergence can be excruciatingly slow due to ill-condi
tioned matrices. This fact can be improved through proper preconditioning. 

A preconditioner Q is an approximation to the system matrix A that is easily invertible, 
i.e. applying the operator Q~l should be relatively cheap in terms of CPU and memory cost. 
Instead of the original linear system Ax = 6, the (right) preconditioned system [AQ-1] [Qx] = b 
is solved. The preconditioned matrix AQ~l should have a better condition (with respect to the 
iterative algorithm) than the original matrix A (e.g., a better eigenvalue spectrum). 

The most common preconditioner for unsymmetric linear systems is incomplete LU-fac
torization without fill (ILU). The preconditioner is constructed as Q = ( / -f- L)(D + U), where 
t h e strict lower triangular matrix L and the strict upper triangular matrix U have the same 
sparsity structure as the original matrix A. L, D, and U are computed by a normal LU-
factorization procedure, but off-diagonal nonzero entries /,j or u,j in the factors occurring at 
positions where the corresponding entry a,j in A is zero are ignored and discarded immediately. 

The diagonal ILU (D-ILU) preconditioner can be written as Q = (D 4- LA)D~1{D + UA), 

where LA and UA are the strict lower and strict upper triangles of A, respectively. D is computed 
by an incomplete ££/-factorization procedure as above, but here even updates to off-diagonal 
entries at nonzero positions in A are ignored. Although the resulting condition may not be 
as good as for ILU, this variant has the advantage that the application of the preconditioner 
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can be implemented much faster when combined with a matrix-vector product (the so-called 
Eisenstat trick [12]). 

Although ILU is widely used, it is far from optimal for "bad" systems, especially in the 
coupled equation solution. Numerical dropping (ND(r)) is a new preconditioning method that 
is also based on £t/-factorizations. Each nonzero entry in the factors (whether there has been 
a nonzero at the position in the matrix A or not) is compared to its row or column maximum. 
If the entry is smaller in magnitude than the maximum times a tolerance r, it is dropped and 
not considered anymore in the factorization process. 

Figure 2 shows timings for the solution of a very ill-conditioned linear system on a CONVEX 
C-220. The linear system occurs in the fully coupled simulation of an MOS-controlled thyristor 
(MCT) [13]. It has 209,874 unknowns, and the matrix contains 4,086,348 nonzero entries. 
Several hundreds of similar systems have to be solved for a transient simulation of this MCT, 
and the entire simulation takes about one week on the C-220. 
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Figure 2: Evolution of the residual norm for the solution of a large and very ill-conditioned 
linear system, using right-preconditioned Bi-CGSTAB with different preconditioned. The X-
axis shows the time in minutes on a CONVEX C-220. 

The full line shows the convergence history of right D-ILU preconditioned Bi-CGSTAB. 
Note that the X-axis shows minutes of execution time. Setting up the D-ILU preconditioner 
comes almost for free, this is why the full line starts just after the Y-axis. One iteration with 
D-ILU takes about 4.4 seconds. 

The dotted line shows right ILU preconditioned Bi-CGSTAB. The setup overhead for the 
ILU preconditioner takes about 100 seconds (so the dotted line starts further right on the plot). 
The first four iterations give ILU here an advantage over D-ILU. However, D-ILU finally catches 

1 
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u p for high accuracies, as ILU requires more time (6 seconds) per iteration. 
The setup for the LU-factorization with numerical dropping is rather complicated and takes 

a lot of time. In above case, the setup for a drop tolerance of 0.01 takes seven and a half CPU 
minutes. The factors that make up the preconditioners only have 32% more nonzero entries 
t h a n the original matrix (and as the ILU factors). One Bi-CGSTAB iteration takes 16.6 seconds 
wi th this preconditioned The dashed line in Figure 2 shows how quickly ND(0.01) recovers from 
i t s late start due to the long setup time. 

The remarkable thing in Figure 2 is that neither the setup part nor the application of the 
numerical dropping preconditioner run in vector mode. The inherent parallelism would be just 
t o small to obtain any vectorization speedup. The D-ILU and ILU preconditioners profit fully 
from the vector capabilities of the CONVEX C-220. Nevertheless the (ND(r))-preconditioned 
algorithm converges faster. 

Numerical dropping did not fail to solve any of our very ill-conditioned systems up to 
today, and it always did it in a reasonable amount of time. With the degree of parallelism 
t h a t current supercomputers can exploit, it is even competitive for moderately ill-conditioned 
systems, despite of its inherent lack of parallelism in the current formulation. A more parallel 
implementation might be possible albeit at much higher storage costs. 

During the last few months, we have carefully tested our new iterative solution schemes 
inside several software packages for two- and three-dimensional numerical device simulation. 
Through a hierarchical solution approach (i.e. a sequence of increasingly robust algorithms and 
preconditioners)) we have completely eliminated the convergence failures experienced before. 
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