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Abstract 

Cutoff frequency characteristics of AlGaAs/GaAs HBTs with various collector 

structures are studied by two-dimensional simulation. Thinner n -collector layer 

with higher doping density is desirable to achieve higher cutoff frequency. Possi­

ble merit and demerit caused by introducing semi-insulating external collectors 

are also discussed. 

I. Introduction 

Recently, AlGaAs/GaAs heterojunction bipolar transistors (HBTs) have received 

great interest for application to high-speed and high-frequency devices. Reduc­

tion in the collector delay time is very important in achieving higher cutoff fre-
2) 

quencies of the HBTs. Other delays such as the emitter charging time and the base 

transit time can be minimized by increasing collector current and by introducing a 

graded-bandgap base. To reduce the parasitic base-collector capacitance and to im­

prove the high-frequency performance, semi-insulating external collectors are often 
3) 4) introduced. ' They are realized by oxgen or proton implantation. However, it is 

not well clarified how the semi-insulating layers affect device characteristics. 

In order to predict device characteristics or to optimize device design, many 
5)-8) one-dimensional simulations of AlGaAs/GaAs HBTs have been made , and some of 
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7) 8) 
them treat electron transport in the collector layer. However, one-dimensional 

approaches can't include effects of external base-collector junctions. Several two-

dimensional simulations of AlGaAs/GaAs HBTs have also been made ' , but most of 

them concentrate on problems about the emitter-base junctions and the base layer. 

In this work, we have made two-dimensional simulations of AlGaAs/GaAs HBTs 

with various collector structures and studied design criteria for the collector 

layer. In addition, possible merit and demerit caused by introducing semi-

insulating external collectors are also discussed. 

II. Physical Model 

Device structures simulated in this study are shown in Fig.l. A graded bandgap 

base is introduced, (a) is a structure with a usual n external collector, where 

the donor density N is varied from 10 cm" to 10 cm , and its thickness L_ is 

varied from 0.1 um to 0.7 um. (b) is a structure with a semi-insulating external 
1 ft — *} 

collector, where N„ and L are set to 5x10 cm and 0.5 um, respectively. Here 

we assume that the semi-insulating (i) layer is achieved by introducing a deep ac­

ceptor into the n -layer. Its density N_, must be higher than N,„ . We also assume 

that the deep acceptor is at the midgap. Electron and hole capture cross sections 
-18 2 -16 2 

of the deep acceptor are typically set to 10 cm and 10 cm , respectively. 
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Fig. l Device structures simulated in th i s study 

(a) HBT with n"-collector thickness of L_ 

(b) HBT with semi-insulating external collector 

(a) HBT with n -col lector thickness of L and n"-doping density of N. 
CI" 
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Basic equations are the Poisson's equation including the ionized deep-acceptor 

term, continuity equations for electrons and holes, and current equations for elec-
12) 

trons and holes. In the continuity equations, an additional recombination rate 

via the deep acceptor is included. Material parameters used in this study are simi-
8) 

lar to those used in a previous study. The basic equations are put into discrete 

forms by the finite difference method and solved by a decoupled method. 

In this study, we concentrate our attention on how small-signal parameters 

such as cutoff frequency f and collector delay time T are affected by collector 

structures. The deep acceptor is handled during small-signal parameter extraction 

by the following way: holding its concentration fixed during the small-signal swing 

to obtain the high-frequency performance. ' f and x are calculated by the 

following equations. 

f 
i a ic 

T 2ir 3Q 
n 

(1) 
VCE = const. 

T 

3QnC 
c " aic 

(2) 
VCE = const. 

where Q and Q are electron charges in the whole device and in the collector re-n nu 

gion, respectively, I_ is the collector current density (normarized by emitter 

area), and V is the collector-emitter voltage. 

ill. Results and Discussions 

A. Dependence of fT on n -Collector Parameters 

First, we describe cutoff frequency characteristics of HBTs with a ususal n 

external collector shown in Fig.1(a). 

Fig.2 shows calculated cutoff frequency f„ versus collector current density I„ 

curves as a parameter of donor density in the n -collector layer N_.. For higher 
L»X 

N„., achievable f is higher in the high Ic region because T becomes shorter, 
though f_ is lower in the relatively low I region as a result of longer t . For 

8) higher N-,., the thickness of collector depletion layer should be thinner , leading 

to a shorter collector transit time and a longer collector charging time. In the 

high I„ region, the charging time decreases and hence the transit time becomes im­

portant. Therefore, above results imply that when a cutoff frequency is considered, 

reduction in the collector transit time is more important than reduction in the 

collector charging time. 
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Fig.3 shows f„ - I„ curves as a parameter of the thickness of n -collector 

layer L . For shorter L , achievable f is higher. This is because for shorter 

L„,, the thickness of collector depletion layer is thinner, resulting in a shorter 

transit time in this region. 
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Fig.2 Cutoff frequency f versus collector current density I c curves for HBTs 

with L„. =0.5 um, with N„. as a parameter. Collector-emitter voltage 
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From above results, we can say that to achieve higher f , reduction in the 

collector transit time is important, and for this purpose, N should be designed 

higher and L_. should be designed thinner. 

B. Effects of Introducing Semi-insulating External Collectors 

Next, to investigate effects of introducing semi-insulating external collec­

tors, we have calculated cutoff frequency characteristics of HBTs with different x. 

in Fig.1(b). Positive xl means that the semi-insulating layer extends into the in­

trinsic collector region, while negative x^ means that the semi-insulating layer is 

away from the intrinsic collector region. 

Fig.4 shows examples of calculated fT - I curves as a parameter of x. . For 

reference, a case of NT = 0 and a case of one-dimensional structure are also shown. 

N = 0 corresponds to a case with a usual n external collector. Fig.5 shows the 

maximum value of f? in each f? - Ic curves, fTmax» as a function of x . From these 

figures, we can see that by introducing the semi-insulating external collector, f_ 

improves in the low Ic region as expected, but it begins to decrease earlier in the 

high current region and an achievable fT becomes lower (when x i 0) than for a case 

without i-layer (N = 0). This is an unexpected result. 
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To consider above points further, we introduce "intrinsic" collector delay 

time T_T and "extrinsic" collector delay time x„„. They are defined by 

3Q_ "nCI 
CI 

lCE 

31, 

3Q 
nCE 

31, 

CE 

'CE 

const. 

const. 

(3) 

(4) 

where Q „_ and Q are electron charges in the intrinsic collector and extrinsic 

collector regions, respectively. T„ T + T_„ 
CI CE 

lc 
TCE • h and Tci I_ curves for 

x = 0 are shown in Fig.6. It is seen that xrv decreases heavily by introducing the 

semi-insulating layer. This is because external base-collector capacitance de­

creases and so the charging time decreases. This contributes to improving f in the 

low I region. While, T increases in the high I„ region by introducing the semi-

insulating layer. This is because a high injection effect is enhanced by intro­

ducing the semi-insulating layer and the collector transit time increases, as de-
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scribed below. Fig.7 shows a comparison of energy band diagrams of HBTs with and 

without a semi-insulating external collector. The collector current density normal­

ized by emitter area is e.SxlO* A/cm2 and it is a relatively high current level. In 

a case with a semi-insulating external collector, the expansion of collector deple­

tion layer (near the n"- i junction) is more remarkable, resulting in a longer 

transit time in this region. Therefore, f_ falls earlier in the high current region. 

o ^ " 

1. 0 

^ ^ 

Fig.7 Comparison of energy band diagrams of HBTs with and without i-layer. 

VCE - 1.5 V and Ic = 6.5xlO
A A/cm2. 

17 -3 
(a) Without i-layer, (b) With i-layer (NT =10 cm , x1 = 0). 
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An easily interpreted way to reduce this unfavorable high injection effect 

(and to keep parasitic base-collector capacitance low) is to set the semi-

insulating layer slightly away from the intrinsic collector region (x.< 0), as seen 

from Figs.A and 5. By setting x < 0, f is improved in the whole I_ region as com­

pared to a case without a semi-insulating layer, as shown in Fig.4. When |x. | is 

too short, above high injection effect can't be so reduced. While, when |x.| is 

long, the parasitic base-collector capacitance becomes large. An appropriate value 

for |x.| depends on how far the space-charge layer at the n - i junction extends 
- 1/2 

into the n -layer. The width of this layer is approximately given by (2eVB/qNc.) 
where VD is the built-in potential. It becomes *\< 0.13 um in this case. B 

As described above, the introduction of semi-insulating external collector can 

lead to unexpected degradation of f_ because of an enhanced high injection effect. 

Therefore, we must take care of this point. This phenonenon may be remarkable in 

small-sized devices. 

IV. Conclusion 

Two-dimensional simulations of AlGaAs/GaAs HBTs with various collector struc­

tures are performed. It is shown that the transit time in collector depletion layer 

becomes a more important factor than the collector charging time in the high cur­

rent region. Therefore, a thinner n -collector layer with higher doping density is 

desirable to achieve higher cutoff frequency. The introduction of semi-insulating 

external collectors is effective in improving cutoff frequency characteristics in 

relatively low current region, but it may lead to an earlier fall of f due to an 

enhanced high injection effect. To reduce this unfavorable effect, the semi-

insulating layer should be slightly away from the intrinsic collector so that it 

may not affect electron transport in the intrinsic collector region. 
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