Two-Dimensional Simulations of AlGaAs/GaAs HBTs with Various Collector Structures

Kazushige Horio, Akira Oguchi and Hisayoshi Yanai

Shibaura Institute of Technology 3-9-14, Shibaura, Minato-ku, Tokyo 108, Japan

Abstract

Cutoff frequency characteristics of AlGaAs/GaAs HBTs with various collector structures are studied by two-dimensional simulation. Thinner n⁻-collector layer with higher doping density is desirable to achieve higher cutoff frequency. Possible merit and demerit caused by introducing semi-insulating external collectors are also discussed.

I. Introduction

Recently, AlGaAs/GaAs heterojunction bipolar transistors (HBTs) have received great interest for application to high-speed and high-frequency devices.¹⁾ Reduction in the collector delay time is very important in achieving higher cutoff frequencies of the HBTs.²⁾ Other delays such as the emitter charging time and the base transit time can be minimized by increasing collector current and by introducing a graded-bandgap base. To reduce the parasitic base-collector capacitance and to improve the high-frequency performance, semi-insulating external collectors are often introduced.^{3),4)} They are realized by oxgen or proton implantation. However, it is not well clarified how the semi-insulating layers affect device characteristics.

In order to predict device characteristics or to optimize device design, many one-dimensional simulations of AlGaAs/GaAs HBTs have been made $^{5)-8)}$, and some of

them treat electron transport in the collector layer.^{7),8)} However, one-dimensional approaches can't include effects of external base-collector junctions. Several two-dimensional simulations of AlGaAs/GaAs HBTs have also been made⁹⁾⁻¹¹⁾, but most of them concentrate on problems about the emitter-base junctions and the base layer.

In this work, we have made two-dimensional simulations of AlGaAs/GaAs HBTs with various collector structures and studied design criteria for the collector layer. In addition, possible merit and demerit caused by introducing semi-insulating external collectors are also discussed.

II. Physical Model

Device structures simulated in this study are shown in Fig.1. A graded bandgap base is introduced. (a) is a structure with a usual n external collector, where the donor density N_{C1} is varied from 10^{16} cm⁻³ to 10^{17} cm⁻³, and its thickness L_{C1} is varied from 0.1 µm to 0.7 µm. (b) is a structure with a semi-insulating external collector, where N_{C1} and L_{C1} are set to 5×10^{16} cm⁻³ and 0.5 µm, respectively. Here we assume that the semi-insulating (i) layer is achieved by introducing a deep acceptor into the n -layer. Its density N_T must be higher than N_{C1} . We also assume that the deep acceptor is at the midgap. Electron and hole capture cross sections of the deep acceptor are typically set to 10^{-18} cm² and 10^{-16} cm², respectively.

(a) HBT with n⁻-collector thickness of L_{C1} and n⁻-doping density of N_{C1} . (b) HBT with semi-insulating external collector.

82

Basic equations are the Poisson's equation including the ionized deep-acceptor term, continuity equations for electrons and holes, and current equations for electrons and holes.¹²⁾ In the continuity equations, an additional recombination rate via the deep acceptor is included. Material parameters used in this study are similar to those used in a previous study.⁸⁾ The basic equations are put into discrete forms by the finite difference method and solved by a decoupled method.

In this study, we concentrate our attention on how small-signal parameters such as cutoff frequency f_T and collector delay time τ_C are affected by collector structures. The deep acceptor is handled during small-signal parameter extraction by the following way: holding its concentration fixed during the small-signal swing to obtain the high-frequency performance.^{13),14)} f_T and τ_C are calculated by the following equations.

$$f_{\rm T} = \frac{1}{2\pi} \cdot \frac{\partial I_{\rm C}}{\partial Q_{\rm n}} \bigg|_{V_{\rm CE}} = \text{const.}$$
(1)

$$\tau_{\rm C} = \frac{\partial Q_{\rm nC}}{\partial I_{\rm C}} \bigg|_{\rm V_{\rm CE}} = {\rm const.}$$
(2)

where Q_n and Q_{nC} are electron charges in the whole device and in the collector region, respectively, I_C is the collector current density (normarized by emitter area), and V_{CF} is the collector-emitter voltage.

III. Results and Discussions

A. Dependence of f_T on n⁻-Collector Parameters

First, we describe cutoff frequency characteristics of HBTs with a ususal n external collector shown in Fig.1(a).

Fig.2 shows calculated cutoff frequency f_T versus collector current density I_C curves as a parameter of donor density in the n-collector layer N_{C1} . For higher N_{C1} , achievable f_T is higher in the high I_C region because τ_C becomes shorter, though f_T is lower in the relatively low I_C region as a result of longer τ_C . For higher N_{C1} , the thickness of collector depletion layer should be thinner⁸, leading to a shorter collector transit time and a longer collector charging time. In the high I_C region, the charging time decreases and hence the transit time becomes important. Therefore, above results imply that when a cutoff frequency is considered, reduction in the collector transit time is more important than reduction in the collector transit time is more important than reduction in the collector charging time.

Fig.3 shows $f_T - I_C$ curves as a parameter of the thickness of n⁻-collector layer L_{C1} . For shorter L_{C1} , achievable f_T is higher. This is because for shorter L_{C1} , the thickness of collector depletion layer is thinner, resulting in a shorter transit time in this region.

Fig.2 Cutoff frequency f_T versus collector current density I_C curves for HBTs with $L_{C1} = 0.5 \ \mu\text{m}$, with N_{C1} as a parameter. Collector-emitter voltage $V_{CE} = 1.5 \ V$.

Fig.3 f_T versus I_C curves for HBTs with $N_{C1} = 5 \times 10^{16} \text{ cm}^{-3}$, with L_{C1} as a parameter.

From above results, we can say that to achieve higher f_T , reduction in the collector transit time is important, and for this purpose, N_{C1} should be designed higher and L_{C1} should be designed thinner.

B. Effects of Introducing Semi-insulating External Collectors

Next, to investigate effects of introducing semi-insulating external collectors, we have calculated cutoff frequency characteristics of HBTs with different x_1 in Fig.1(b). Positive x_1 means that the semi-insulating layer extends into the intrinsic collector region, while negative x_1 means that the semi-insulating layer is away from the intrinsic collector region.

Fig.4 shows examples of calculated $f_T - I_C$ curves as a parameter of x_1 . For reference, a case of $N_T = 0$ and a case of one-dimensional structure are also shown. $N_T = 0$ corresponds to a case with a usual n external collector. Fig.5 shows the maximum value of f_T in each $f_T - I_C$ curves, f_{Tmax} , as a function of x_1 . From these figures, we can see that by introducing the semi-insulating external collector, f_T improves in the low I_C region as expected, but it begins to decrease earlier in the high current region and an achievable f_T becomes lower (when $x_1 \ge 0$) than for a case without i-layer ($N_T = 0$). This is an unexpected result.

Fig.4 f_T versus I_C curves for HBTs with semi-insulating layer shown in Fig.1(b) $(N_T = 10^{17} \text{ cm}^{-3})$, with x₁ as a parameter.

Fig.5 Maximum value of cutoff frequency in $f_T - I_C$ curves, f_{Tmax} , as a function of x_1 .

To consider above points further, we introduce "intrinsic" collector delay time τ_{CI} and "extrinsic" collector delay time τ_{CE} . They are defined by

$$\tau_{\rm CI} = \frac{\partial Q_{\rm nCI}}{\partial I_{\rm C}} \bigg|_{\rm V_{\rm CE}} = \text{const.}$$
(3)

$$\tau_{CE} \equiv \frac{\partial Q_{nCE}}{\partial I_C} \middle| V_{CE} = \text{const.}$$
(4)

where Q_{nCI} and Q_{nCE} are electron charges in the intrinsic collector and extrinsic collector regions, respectively. $\tau_{CI} + \tau_{CE} = \tau_C$. $\tau_{CE} - I_C$ and $\tau_{CI} - I_C$ curves for $x_1 = 0$ are shown in Fig.6. It is seen that τ_{CE} decreases heavily by introducing the semi-insulating layer. This is because external base-collector capacitance decreases and so the charging time decreases. This contributes to improving f_T in the low I_C region. While, τ_{CI} increases in the high I_C region by introducing the semi-insulating layer. This is because a high injection effect is enhanced by introducing the semi-insulating layer and the collector transit time increases, as de-

Fig.6 (a) Extrinsic collector delay time τ_{CE} and (b) Intrinsic collector delay time τ_{CI} as a function of I_C , corresponding to Fig.4 ($x_1 = 0$).

scribed below. Fig.7 shows a comparison of energy band diagrams of HBTs with and without a semi-insulating external collector. The collector current density normalized by emitter area is 6.5×10^4 A/cm² and it is a relatively high current level. In a case with a semi-insulating external collector, the expansion of collector depletion layer (near the n⁻ i junction) is more remarkable, resulting in a longer transit time in this region. Therefore, f_T falls earlier in the high current region.

Fig.7 Comparison of energy band diagrams of HBTs with and without i-layer. $V_{CE} = 1.5 \text{ V}$ and $I_{C} = 6.5 \text{x} 10^4 \text{ A/cm}^2$. (a) Without i-layer, (b) With i-layer (N_T = 10^{17} cm^{-3} , $x_1 = 0$).

An easily interpreted way to reduce this unfavorable high injection effect (and to keep parasitic base-collector capacitance low) is to set the semiinsulating layer slightly away from the intrinsic collector region $(x_1 < 0)$, as seen from Figs.4 and 5. By setting $x_1 < 0$, f_T is improved in the whole I_C region as compared to a case without a semi-insulating layer, as shown in Fig.4. When $|x_1|$ is too short, above high injection effect can't be so reduced. While, when $|x_1|$ is long, the parasitic base-collector capacitance becomes large. An appropriate value for $|x_1|$ depends on how far the space-charge layer at the n⁻ i junction extends into the n⁻layer. The width of this layer is approximately given by $(2\epsilon V_B/qN_{C1})^{1/2}$ where V_B is the built-in potential. It becomes $\sim 0.13 \ \mu m$ in this case.

As described above, the introduction of semi-insulating external collector can lead to unexpected degradation of f_T because of an enhanced high injection effect. Therefore, we must take care of this point. This phenonenon may be remarkable in small-sized devices.

IV. Conclusion

Two-dimensional simulations of AlGaAs/GaAs HBTs with various collector structures are performed. It is shown that the transit time in collector depletion layer becomes a more important factor than the collector charging time in the high current region. Therefore, a thinner n-collector layer with higher doping density is desirable to achieve higher cutoff frequency. The introduction of semi-insulating external collectors is effective in improving cutoff frequency characteristics in relatively low current region, but it may lead to an earlier fall of f_T due to an enhanced high injection effect. To reduce this unfavorable effect, the semiinsulating layer should be slightly away from the intrinsic collector so that it may not affect electron transport in the intrinsic collector region.

References

- P.M.Asbeck, M.F.Chang, J.A.Higgins, N.F.Sheng, G.J.Sullivan and K.-C.Wang, "GaAlAs/GaAs heterojunction bipolar transistors: Issues and prospects for application", IEEE Trans. Electron Devices, vol.36, pp.2032-2042, 1989.
- 2) T.Ishibashi and Y.Yamauchi, "A possible near-ballistic collection in an AlGaAs/ GaAs HBT with a modified collector structure", IEEE Trans. Electron Devices, vol.35, pp.401-404, 1988.

- 3) P.M.Asbeck, D.E.Miller, R.J.Anderson and F.H.Eisen, "GaAs/(Ga,Al)As heterojunction bipolar transistors with buried oxgen-implanted isolation layers", IEEE Electron Device Lett., vol.EDL-5, pp.310-312, 1984.
- 4) O.Nakajima, K.Nagata, Y.Yamauchi, H.Itoh and T.Ishibashi, "High-performance AlGaAs/GaAs HBT's utilizing proton-implanted buried layers and highly doped base layers", IEEE Trans. Electron Devices, vol.ED-34, pp.2393-2398, 1987.
- 5) J.Yoshida, M.Kurata, K.Morizuka and A.Hojo, "Emitter-base bandgap grading effects on GaAlAs/GaAs heterojunction bipolar transistor characteristics", IEEE Trans. Electron Devices, vol.ED-32, pp.1714-1721, 1985.
- 6) A.Das and M.S.Lundstrom, "Numerical study of emitter-base junction design for AlGaAs/GaAs heterojunction bipolar transistors", IEEE Trans. Electron Devices, vol.35, pp.863-870, 1988.
- 7) P.I.Rockett, "Monte Carlo study of the influence of collector region velocity overshoot on the high-frequency performance of AlGaAs/GaAs heterojunction bipolar transistor", IEEE Trans. Electron Devices, vol.35, pp.1573-1579, 1988.
- K.Horio, Y.Iwatsu and H.Yanai, "Numerical simulation of AlGaAs/GaAs heterojunction bipolar transistors with various collector parameters", IEEE Trans. Electron Devices, vol.36, pp.617-624, 1989.
- 9) Y.S.Hiraoka, J.Yoshida and M.Azuma, "Two-dimensional analysis of emitter-size effect on current gain for GaAlAs/GaAs HBT's", IEEE Trans. Electron Devices, vol.ED-34, pp.721-725, 1987.
- 10) M.Meyyappan, G.Andrews, H.L.Grubin and J.P.Krekovsky, "Analysis of a selfaligned AlGaAs/GaAs heterojunction bipolar transistor: Steady-state and transient simulations", J. Appl. Phys., vol.66, pp.3348-3354, 1989.
- 11) S.Tiwari and D.J.Frank, "Analysis of the operation of GaAlAs/GaAs HBT's", IEEE Trans. Electron Devices, vol.36, pp.2105-2121, 1989.
- 12) K.Horio, K.Asada and H.Yanai, "Two-dimensional simulations of GaAs MESFETs with deep acceptors in the semi-insulating substrate", Solid-State Electron., vol.34, pp.335-343, 1991.
- 13) T.Shawki, G.Salmer and O.El-Sayed, "MODFET 2-D hydrodynamic energy modeling: Optimization of suquarter-micron-gate structures", IEEE Trans. Electron Devices, vol.37, pp.21-30, 1990.
- 14) K.Horio, Y.Fuseya, H.Kusuki and H.Yanai, "Small-signal parameters of GaAs MESFET's as affected by substrate properties — Computer simulation — ", IEICE Trans., vol.E74, no.5, 1991.