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Abst rac t 

We have developed an automatic grid generator, called fi, for complex nonplanar three-
dimensional (3-D) semiconductor device structures. The meshes generated by Q permit an 
exact geometry modeling of the rather general domain boundaries of modern semiconductor 
technologies. Avoiding obtuse angles by construction, fi is the ideal preprocessor for a 3-D 
device simulator. 

The numerical solution of partial differential equations ( P D E S ) is invaluable in the design and 
the optimization of semiconductor devices and integrated circuits. The spatial discretization of 
the structure to be simulated is the key to the accuracy of the computed solution. A reasonable 
approximation of the geometry to be modeled and of all internal quantities relevant to the solu­
t ion of the PDEs, such as the doping profile, is extremely important . Additional constraints arise 
from the discretization schemes used. As classical finite element schemes seem inappropriate, 
PDEs are usually solved using the control volume or box method [9]. This necessitates that 
obtuse angles be avoided, another nontrivial condition. 

In two dimensions(2-D), both rectangles and triangles have been used for the initial coverage 
of the integration domain. Bank and co-workers have proposed covering the integration domain 
(a closed polygon) with a carefully chosen triangulation, and to recursively subdivide triangles 
where higher mesh resolution is needed into four similar triangles, through the addition of four 
new mid-edge points [2, 3]. Yerry and Shephard proposed to use a modified quadtree data 
s t ructure: the integration domain is encapsulated in a square, and the square's quadrants are 
recursively subdivided in quadrants until the mesh density is sufficient to model the domain 
geometry and internal quantities appropriately [4]. Miiller et al.[13] have recently extended the 
quadtree idea in the implementation of a fully automatic 2-D mesh generator. 

In 3-D, the recursive refinement of simplices (i.e., tetrahedra) is much harder than in 2-D [5]. 
Major problems include the difficulty in generating a well-shaped initial tetrahedra! grid, the 
impossibility to regularly subdivide tetrahedra in similar sub-elements, and the problems with 
te t rahedra between dense and coarse mesh regions. Therefore, the modified quadtree approach 
has been extended successfully to three dimensions [6, 7, 8]. The 3-D domain is enclosed in 
a cube, whose octants are repeatedly refined until the boundary and corresponding internal 
quantities arc sufficiently approximated. A slightly different approach for the generation of 
octree-based Delaunay meshes has been proposed by Schroeder and Shephard [11]. 

The first version of the grid generator fi0ct(^ octree), as presented in [10], was based on 
a conventional modified octree approach. It was shown that the octants of an octree could 
be completed with additional edges on the surface or in the interior of each octant. Modified 
octrees suffer from three serious drawbacks. First, all octants are cubic and the point density is 
locally constant along all three coordinate axes. However, relevant quantities in a semiconductor 
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device may vary strongly along one axis, while remaining constant in the plane perpendicular 
to the axis. In these cases, isotropic cells, as those resulting from modified octrees, lead to a 
large number of redundant mesh points. Second, the algorithm used to obtain Delaunay meshes 
requires that material interfaces intersect an octant in the center of its edges. As a result, several 
refinements and a huge number of mesh points were required along material interfaces. Third, 
there may be inaccuracies in computing the volume discretization for interface elements. 

In order to overcome these problems, the current version of fime(fi mixed-elements) general­
izes the modified octree approach in several aspects. The whole device is no longer encapsulated 
in a single octree, but partitioned in a set of macro-elements consisting of cubes, rectangular 
prisms and rectangular pyramids. We use this set of elements because they allow the dis­
cretization of the device volume using the box method. Furthermore, they are closed under the 
refinement process, that is, each element obtained after a partition belongs to the same set1. 

Using this approach, arbitrary plane-faced geometries can be represented using a reason­
able number of mesh points, and no refinement along material interfaces is required to fit the 
geometry of the device. Subsequently, the desired mesh density in the interior of the device is 
obtained through the recursive refinement of prisms, pyramids, and cuboids. If a finer mesh 
is required along one, two, or three coordinate axes, cubes, for example, are subdivided into 
halves, four quadrants, and eight octants, respectively. Then, the elements with additional 
mid-edge points are subdivided into tetrahedra, pyramids, prisms, or bricks in order to get a 
proper finite element mesh. 

1 New approach on the mesh generation process 

Q starts by generating a 3-D tensor-product mesh, i.e., an initial grid in a cuboid called the 
bounding volume is drawn, which surrounds the perimeter of the device geometry with the 
minimum volume. The bounding volume looks like a set of cuboids that may be crossed by 
boundary or internal interfaces. Uncut cuboids are already valid as macro-elements. Cut 
cuboids are tessellated in valid macro-elements using a set of predefined patterns that fit a 
particular cut cuboid. For example, two simple cut cuboids and their tessellations are shown 
in Figure 1. The left cuboid is tessellated in two rectangular prisms and the right one in three 
rectangular pyramids. 

Figure 1: Patterns to fit cut cuboids. 

Finally, the material of each macro-element is set. Figure 2 shows the macro-grid for the a 
model of the ECL bipolar transistor. At the left side, the whole device was separated into its 

'A very simple element, the rectangular tetrahedron, cannot be used as macro-element because it is neither 
possible to discretize its volume using the box discretization method nor to find a partition including only elements 
belonging to the same set. 
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two different material regions in order to show how the interface was fit, and at the right side, 
a zoomed view shows clearly the type of macro-elements used. 

Figure 2: Macro-grid for the ECL bipolar transistor. The number of macro-elements is 2,069: 
28 pyramids, 369 prisms and 1,672 cuboids. 

X 
y 

Figure 3: Cuboids refined in one, two, or three directions generate two, four, or eight cuboids, 
respectively. 

The macro-elements must be recursively refined to resolve geometry and doping until an 
adequate mesh density is obtained. In Figures 3 and 4, the allowed direction refinement for a 
cubic and a pyramid macro-element are shown. Elements considered too coarse are repeatedly 
refined until the final grid is appropriately dense in all regions of the device. 

After the adequate mesh density is obtained, all the trees are made l-irregular[2]. If pos­
sible, fi tessellates 1-irregular leaves into tetrahedra, pyramids, prism, and cuboids based on 
precomputed information. If, in some cases, this information is not available or the leaf fails to 
fulfill eccentricity conditions, Q has several heuristic strategies that either refine perpendicular 
to the longest edge or add some additional mid-edge points to render the current leaf splittable. 
In order to guarantee convergence, no element is refined finest beyond the level of refinement 
attained before the 1-irregular step. 
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Figure 4: Pyramid refinement in the three directions generates two prisms, two pyramids and 
one cuboid. 

Figure 5: Voronoi cross sections for a 1-irregular prism with three split edges 

In addition to the finite element grid itself, ft provides the surface of the Voronoi cross section 
perpendicular to each Delaunay edge of the grid. Necessary for the integration of the device 
equations, these surfaces are evaluated symbolically using Mathematica [12]. As an example, 
Figure 5 shows the Voronoi cross sections for a 1-irregular prism. 

2 Comparison between the different versions of Q 

The current version of Q, is slower than the old one but generates significantly fewer points, 
thus allowing the simulation of more complex semiconductor structures. Table 1 shows the 
mesh sizes and CPU and memory requirements for differents device structures, run on a SUN 
SPARCstation 1+ with 20Mb main memory. The last three examples could only be generated 
using ftmedue to their nonplanarity. 

Device 
fiVersion 

# points 
# elements 
CPU [s] 
memory (mb) 

CMOS 
"oct 

68820 
100033 

284 
13.7 

" m e 

13926 
13008 

165 
10.8 

ECL 

i'me 

17678 
22904 
2330 
11,3 

LOCOS 
" m e 

42131 
66524 
9867 
18,54 

MCT 
^ m e 

29355 
41938 
1655 
14,2 

Table 1: CPU and memory requirements of fioct and fi 
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There is no obvious relation between the number of points and CPU time. The CPU time 
depends strongly on the geometrical complexity of the modeled device. fime takes more time to 
generate a mesh if pyramids were used to fit the geometry. The reason is the pyramid's lack of 
flexibility in refining and handling the 1-irregular condition in a pyramid. 

Figure 6: Trench-isolated bipolar transistor. The curved oxide trench was approximated using 
pyramids and prisms. The whole device has 17,313 points and 21,978 3-D elements. 

3 New examples 

As representative examples of the current ft functionality, Figure 6 shows a trench-isolated 
bipolar transistor as used in state-of-the-art high-speed ECL designs. The left side shows the 
geometrical characteristics and impurity distribution after the proper grid was generated, and 
the right side shows a zoomed view of the grid generated at the p-channel. Figure 7 shows a 
short channel MOS transistor with surrounding LOCOS isolation. Again the device geometry 
and the impurity distribution are shown on the left side and a zoomed view on a part of the 
p-region under the gate is shown in the right. Figure 8 shows a MOS-controlled Thyristor with 
integrated MOS controlled n+ emitter shorts and a bipolar turn-on gate. The left figure shows 
the impurity concentration and the mesh in the top part of the device, and the figure on the 
right one shows a zoomed view of the very thin oxide layer. 



Figure 7: The whole grid for the LOCOS has 42,567 points and 62,442 3-D elements. 
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Figure 8: The whole grid for the MCT has 29355 points and 41938 3-D elements. 
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