
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4 
Edited by W. Fichlner, D. Aemmer - Zurich (Switzerland) September 12-14,1991 - Hartung-Gorre 

A PIF Implementation for TCAD Purposes 

F. Fasching, C. Fischer, S. Selberherr, H. Stippel, W. Tuppa 
institute for MicroeJectronics, Technical University of Vienna, Austria 

H. Read 
ECE Department, Carnegie Mellon University, Pittsburgh, PA, USA 

Abstract 

The implementation of the Profile Interchange Format (PIF) for Technology CAD (TCAD) 
purposes is demonstrated. An application program interface for use with process and device 
simulation tools coded in FORTRAN, C and LISP is presented, capable of performing con­
venient, fast and flexible access to an extendable binary data format which fulfills todays 
and future needs for physical and logical TCAD information exchange. 

1 Introduction 

Recent developments have proven the need for integrating process and device simulation tools 
in to a common environment to allow centralized simulation control and information exchange. 
I n order to aid the integration of those tools, a common interchange format for simulation and 
measurement data has been proposed in [1]. This proposal of a textual PIF has stimulated other 
work on a binary PIF implementation (e.g. [2]). Although those implementations are rigorous 
i n terms of functional orthogonality for C and LISP applications, they lack access speed and 
operating system independence as well as a FORTRAN interface. We extended the textual 
P I F for the use in TCAD environments, developed a flexible binary format and implemented 
a fast and operating system independent programming interface for FORTRAN, C and LISP 
applications (see [3], [4]). 

2 The Intersite PIF 

T h e intersite (textual, ASCn) form of the PIF is used to exchange simulation and measurement 
d a t a between sites via eletronic mail or the file transfer protocol. The original intention was 
t o allow the transfer of geometry, grid and attribute information between simulators and/or 
measurement equipment. Since the expectations in integrated simulation systems are growing 
continuously, just simply coupling the tools is not enough. We extended the PLF syntax to 
accommodate the needs of TCAD applications; thus additional information relevant to the 
environment can be incorporated in the PIF. 

The basic needs of an interchange format are fulfilled with the geometry, gr id and a t t r i b u t e 
constructs, shown in Fig. 1. Geometries can be specified either hierarchically or nonhierarchi-
cally, using various list constructs to build up primitive and physical geometric objects. 

A necessary functionality for TCAD applications is the ability to use an arbitrary number 
of dimensions for the points, and different - even nonspatial - units for each dimension. This 



478 

PIF 

PI F objects 

PIF object groups 

snapshot 

111 objectGroup 

l l i l i i i l l written meta 

r-

pointList 
lineList 
faceList 
solidUst 

segmentUst 
boundaryUst 

„ \ ̂ 
^ 

nameList 

userData 

comment 

PIF geometric objects 

PIF primitive geometric objects 

PIF physical geometric objects 

Figure 1: The logical PIF structure 

allows e.g. the incorporation of points into a multidimensional parameter space for optimiza­
tion purposes. Grids can be defined over physical geometric objects, but in contrast to other 
approaches both grids consisting of arbitrary elements (defined with primitive geometric ob­
jects) and orthogonal grids (defined with the orthoProduct construct) can be stored in the 
PIF. Both geometry and grid constructs have a grouping function, i.e. they gather other PIF 
objects and give this group a special meaning. Other constructs with grouping functionality 
are the snapshot construct, grouping together PIF objects that relate to a certain time step or 
a distinct parameter set, and the objectGroup construct, providing just a logical grouping of 
objects with no explicitly defined meaning. Except from the nameList, the grouping constructs 
are PIF objects, implying that they have a name by which they can be referenced from other 
PIF objects. 

At t r ibutes are very powerful PIF objects. They can be classified into physical or non-
physical attributes and concentrated or distributed attributes. Attributes are equipped with an 
attribute type which defines a (standardized) meaning of the attribute. 



479 

Physical attributes are used to describe all non-geometrical aspects of a simulation prob­
l e m like boundary conditions, materialtype, electrical properties and to describe the solutions 
t o a problem like electric potential, charge density, doping profile and so on, which can be 
t h e input (physical problem description) to another simulation step. Physical attributs are 
m o s t l y nested: the upper level at tr ibute tells which aspect of the physical problem is described. 
F o r example, this can be one of SegmentDescr ipt ion (physical properties of a segment), 
I m p u r i t y D e s c r i p t i o n , F i e l d D e s c r i p t i o n , BoundaryDescr ipt ion, I n t e r f a c e D e s c r i p t i o n , 
C o n t a c t D e s c r i p t i o n or Te rmina lDesc r ip t ion . Within these toplevel attributes there are 
generic attributes like Mater ia lType, Concen t ra t ion , or V e l o c i t y or more specific attributes 
l i k e E l e c t r i c P o t e n t i a l , I n t e r f aceValue or Tena ina lGurren t (these are just a few examples). 

Non-physical attributes are used for different purposes. They are used to specify the CPU 
t i m e required to produce a given PIF object, to identify a set of objects with a simulation step 
I D , to define additional connections between elements of a mesh and many things more. 

All attributes should adhere to the semantical standardization of the At t r ibu teType in 
o r d e r to enable different tools to interprete the things described by attributes in the right way. 

The w r i t t e n construct is used to incorporate a history and revision mechanism into PIF, 
al lowing to track down the modification steps of a PIF file to its creation. This information 
includes the person (or program) who made changes to the PIF , the time, date and location as 
w e l l as references to the objects which have been changed. 

Any kind of information necessary for the TCAD system can be represented, be it a process 
f low representation or even a whole TCAD shell task program, as long as it conforms to a LISP 
s y n t a x . This is mainly achieved by the help of the meta construct. 

A comment construct is provided to specify comments which are also to be included in the 
in t e r too l PIF . LISP-style comments are allowed anywhere in the intersite PEF, but they are 
i gno red on converting the intersite to the intertool PIF . 

The use rData construct is provided for the incorporation of nonstandard extensions to the 
P I F . It also implements full LISP syntax, but should be avoided wherever possible. 

3 The Intertool PIF 

T h e intertool (binary) form of the PIF allows for fast and compact information sharing at 
o n e site. In order to retain the full flexibility of the intersite format even in its binary mode, 
d a t a structures have been developed which provide for a close bijective representation of LISP 
pr imi t ives . Thus any datum expressible in LISP notation can be stored in the binary file. Fig. 2 
s h o w s the available primitives which can be combined into (even compressed) arrays and linked 
toge the r . Additionally, a symbol hash table maintained in the binary PIF file enables fast access 
t o named PIF objects. One binary PIF file can hold a virtually unlimited number of logical 
P I F units, with one logical PIF unit being a PIF file in the sense of [1]. 

4 The PIF Application Interface 

T h e base of a TCAD environment and the most critical part in terms of functionality, per­
fo rmance and extendability is the programming interface to binary PIF access. These crucial 
p o i n t s were kept in mind during the development of the PIF application interface (PAI), which 
i s implemented as a strictly layered product (Fig. 3). 

To begin at the very bottom, a system layer hides all system dependencies concerning the 
communicat ion with the operating system from the rest of the PAI, which is therefore system 



480 

byte 

unsigned cardinal objects 

«!»* ehortint 

signed cardinal objects 

im long Double 

float objects 

pointer 

special objects 

Figure 2: Binary PIF data primitives 

independent. Adopting the PAI to another operating system is an easy and straightforward task. 
On top of the system layer, a file layer deals with physical files and objects. The compressing 
and caching layers take the necessary performance and space aspects into account. 

The basic layer handles the structure of the information stored in the PIF (it only deals 
with primitive data as can be seen in Fig. 2), whereas the interface layer allowes access to PIF 
objects, suited for advanced C. Both layers are constructed with automatic code generators, thus 
enabling an easy adoption to future changes. The interface layer is the standardized interface 
to the PIF data base on which all programs which handle PIF files should be set up. 

To allow easy data access, an application layer has been designed. It deals with whole PIF 
objects - like pointLists, lineLists, Grids (see Fig. 3) -, whereas the interface layer only supports 
"smaller parts" -e.g. nameLists, valueLists -of these objects. The application layer provides 
useful functions like unit conversion, scaling and transformation. It is not restricted to C; it is 
also interfaced to FORTRAN and LISP applications. 

Common applications can easily use data stored in PIF format by only calling the functions 
(for C, subroutines for FORTRAN) of the application layer. It shall be pointed out that an 
extension of the application layer is possible and very simple. The interface layer will then serve 
as a standardized interface to the PIF data base. 



481 

User Interface Agent 

with PIF Editor 

(based on X11R4) 

Technology CAD Shell 

(based on LISP) 

TCAD 
MM 

PROMIS PDBM 

PAI application layer 

PAI interface layer 

PAI basic layer 

PAI compression layer 

PAI caching layer 

System layer 

PIF 

ASCII File 

Figure 3: Binary PIF data primitives 

The integrated and self-consistent design of data exchange format syntax, application inter­
face functionality and shell programming language offers many benefits both from the program­
mer ' s and user's point of view and is considered a superior solution compared to stand-alone 
approaches of TCAD systems or data exchange formats. 

5 Conclusion 

T h e TCAD-oriented PIF, especially the application interface, has been proven as an expressive 
a n d powerful means in simulators like MINIMOS [5], PROMIS [6] or VLSICAP [7], and makes 
u p the base of our integrated technology CAD system [3]. Extensions will include a network 
layer and a message passing protocol based upon it, not only allowing applications to access 
remote binary PIF files on a database server, but enabling clients to communicate with each 
other through the interface, thus enforcing distributed processing concepts in systems to come. 



482 

Acknowledgement 

This project is supported by the research laboratories of: AUSTRIAN INDUSTRIES - AMS 
Int. at Unterpremstatten, Austria; DIGITAL EQUIPMENT Corp. at Hudson, USA; SIEMENS 
Corp. at Munich, FRG; and SONY Corp. at Atsugi, Japan. 

References 

[1] S. Duvall, An Interchange Format for Process and Device Simulation, IEEE Transactions 
on Computer Aided Design, Vol. 7, pp. 489-500, 1988. 

[2] A. Wong et al, The Intertool Profile Interchange Format, Proc. NUPAD III, pp. 61-62,1990 

[3] S. Selberherr et al., The Viennese TCAD System, Proc. Int. Workshop on VLSI Process 
and Device Modeling, Oiso, 1991 

[4] F. Fasching et al., An Integrated Technology CAD Environment, Proc. Int. Symp. on VLSI 
Technology, Systems and Applications, Taipei, Taiwan, 1991. 

[5] S. Selberherr, Three Dimensional Device Modeling with MINIMOS 5, Proc. International 
Workshop on VLSI Process and Device Modeling , pp. 40-41, 1989. 

[6] G. Hobler et al, RTA-Simulation with the 2D Process Simulator PROMIS, Proc. NUPAD 
m , pp. 13-14, 1990. 

[7] F. Straker et al., Capacitance Computation for VLSI Structures, Proc. EUROCON, pp . 
602-608, 1986. 


