
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4
Edited by W. Fichlner, D. Aemmer - Zurich (Switzerland) September 12-14,1991 - Hartung-Gorre

BI-CGSTAB in semiconductor modelling

Marjan Driessen
Nederlandse Philips Bedrijven B.V., Philips Research Laboratories,

Eindhoven, The Netherlands

Henk A. Van der Vorst
Mathematical Institute, University of Utrecht, Budapestlaan 6,

Utrecht, the Netherlands

Abstract

We investigate the use of the Bi-CGSTAB method [17] for solving the linear systems that
typically occur when solving the coupled semiconductor equations. The investigations have
been performed with the device modelling package Curry [9]. The Bi-CGSTAB method is
compared with the CGS method [13], which was standard in Curry,

Over the last few years the linear solvers used in the software package Curry [9] have evolved
to reasonably robust and satisfying modules. The package includes several linear solver modules,
because the two nonlinear solution methods implemented (Newton, Gummel) as well as the
various types of analysis (AC, DC, transient) give rise to different linear systems, requiring
different linear solvers.
We will restrict ourselves to the linear solver for the systems which arise from using Newton's
method on the coupled equations. This choice was made because most of the steady-state
and transient calculations can be done using this solver, so we expect the test results for these
problems to give a fair appraisal of the method.
The CGS [13] method works in general very well for this type of semiconductor problems. It
converges much faster than BT-CG [5] and does not have the disadvantage of having to store
extra vectors like in GMRES [12]. These three methods have been compared in many studies
(see, e.g., [2],[1], [10], [8]).
But CGS usually shows a very irregular convergence behaviour. This behaviour can even lead
to cancellation and a spoiled solution, which can prevent the nonlinear solver from converging.
These problems are largely avoided in Bi-CGSTAB [17], a recently proposed conjugate gradient
like iterative method with some very promising properties. Not only does it exhibit a more
smooth convergence behaviour, so that cancellation usually does not play a role, but it often
also takes less iterations than CGS. In the figures 1 and 2 we see two typical convergence histories
for CGS and Bi-CGSTAB that we have obtained in our 2D semiconductor computations.
For the Bi-CGSTAB algorithm there are several interesting issues to consider, like the current
conservation, choice of starting vectors, computation of parameters, and preconditioning. We
will address these issues to some extent in this paper.

46

1 Bi-CGSTAB

The preconditioned Bi-CGSTAB algorithm for solving the linear system Ax = b, with precon­
ditioning K reads as follows [17]:

XQ is an initial guess;ro = b — AXQ\
f arbitrary, such that (f, ro) ^ 0;
wo = Po = a = 1; v0 = 0; i = 1;
while â is not acceptable do
begin

Pi = r;-i + /?(p;-i - Ui-iVi-i);

solve p from A"p = p,-
Vj = Ap;

a = pi/(f,Vi);

s = r,_! - aw,-;
solve s from A"s = 5;
f = As;
Lji = (KZ1t,KZ1s)/(KZlt,KZxi);
Xi = z,-i + ap-f-u?,s;
r,- = s - w,-t;
i = i + 1;

end

The matrix A' (= KLKR) in this scheme represents the preconditioning matrix and the way
of preconditioning [17]. The above scheme in fact carries out the Bi-CGSTAB procedure for the
explicitly preconditioned linear system

KZ1AK^1y = KZ\

but the vectors j/,- and the residual have been backtransformed to the vectors x, and n corre­
sponding to the original system Ax - b.

Compared to CGS two extra innerproducts need to be calculated. Furthermore the calcula­
tion of KZ1t does not appear in the CGS algorithm, but we will return to this subject in section
3.1.

There is an interesting relation between the residuals generated by BI-CG, CGS and BI-
CGSTAB. In order to simplify notations we assume that these schemes are applied with K - I
(no preconditioning). Then it is well-known that the residual Tfx~CG can be written as

rBl-CG = p . (i 4) r 0 f

where r0 is the starting residual and Pi(A) is an i-th degree polynomial with P,-(0) = 1.
In CGS a solution is constructed for which the residual rCGS satisfies

TCGS = pKA)r^

47

where P, is the same polynomial as in BI-CG. Bi-CGSTAB finally, leads to residuals rBi-CGSTAB
that can be written as

TBi-CGSTAB = Qi{A)Pi{AW

with Pi again as in BI-CG, and Qi is chosen as a polynomial of the form

Qi(A) = (J - « ! A)(I - u2A) • • • (/ - UiA).

The value of Uj is determined in the j'-th iteration step such that r?'-CGSTAB -1S m i n i m a l as
a function of Uj. Gutknecht [6] has recently proposed a variant of Bi-CGSTAB in which the
minimization constants u>j are chosen pairwise so as to minimize over two-dimensional spaces
rather than in only one direction at a time. This variant has been named BICGSTAB2.

The above described polynomial relations will be used in section 3.3 in order to understand
some effects in the convergence behaviour of the BI-CG family.

2 Current conservation in semiconductor modelling

In the package Curry [9] the semiconductor equations can be solved in a coupled way. The
coupled equations are highly non-linear and they are solved using Newton's method. It is well
known that Newton's method converges quadratically when close enough to the solution.
In each iteration of the Newton method a linear system needs to be solved. The convergence
criteria for the linear solver should be so that the errors that are made in solving the linear
system do not disturb the (quadratic) convergence behaviour of Newton. On the other hand
they should not be so strict that the linear systems are solved more accurately than necessary
for Newton. Therefore, in Curry the convergence criteria for the linear and the non-linear solver
are coupled as described in [11]:

HdxiHoo < C-erllxjUoo + CjvejvllyjtHoo + £3

where dx{ is the increment to a;,- in the i-th iteration, a;,- is the approximation of the solution
in the i-th iteration, ijk is the solution of the Newton process in the previous Newton iteration,
C, is a constant which becomes smaller when Newton starts converging quadratically. CN is a
constant smaller than 1, which has been added to avoid identical convergence criteria for the
linear process and the Newton process, which could cause a non-convergent Newton process.
The parameters er, EN and ea are the tolerances. They are given a default value, but they can
be changed by the user.

The determining factor in semiconductor modelling for the choice of the convergence criteria
is the current conservation. With default accuracy we want to have current conservation for
currents that are of order 10"8.

In comparing the Bi-CGSTAB method with the CGS method it was found that the param­
eter er should be much smaller for Bi-CGSTAB than for CGS if we want current conservation
for currents of order 10~8.
This is not as strange as it might seem. In semiconductor modelling, as in many other appli­
cations, CGS exhibits sometimes a very irregular convergence behaviour. In case of a rather

48

uneven distribution of the errorcomponents with respect to an eigenvector basis, squaring the
BI-CG polynomial, as is done in CGS, leads to an immediate increase of the residual. For that
reason we require the residual to be small during a successive, small number of iteration steps.
As a result of this the actual error is often noticeably less than the required one.
For Bi-CGSTAB such a procedure is not necessary since it shows a much less irregular conver­
gence behaviour, but now a smaller er is needed to ensure a similar current conservation as in
CGS.
Hence, in the examples that are shown further on in this paper, the parameters in the conver­
gence criteria are not identical for both methods, but they are such that the current conservation
was satisfied to about the same degree.

3 Choice of parameters in Bi-CGSTAB

In [17] a number of options are given for the algorithm. The options are here examined on their
merit in semiconductor problems.

3.1 Determinat ion of u

In the algorithm the expression for u contains K^t. Our preconditioning is based on an incom­
plete decomposition of the matrix A. Results for CGS have shown us that the preconditioning
can best be done from both sides [4]. Hence in our case KL would be the lower triangular factor
and this means one extra forward substitution in each iteration step for computing u>. This is
not a very attractive prospect. Furthermore, an extra auxiliary vector is necessary to store the
vector Klls (which is obtained as an intermediate result in the computation of s).
The alternative presented in [17] is to replace the expression simply by w,- = (t,s)/(t,t). In
our examples this worked fine. This approach requires sometimes a few more iterations, but
since the time per iteration is less, the total time decreases. In [17] it is shown that this choice
effectively comes down to postconditioning for another choice of f. This may well explain the
differences in convergence behaviour, see section 3.3.
Note that with the above choice for u> we minimize the current residual for the original system,
which might be the most desirable thing to do anyway.

3.2 T h e parameter p

The schemes for CGS and Bi-CGSTAB are esentially based upon the reconstruction of the
BI-CG iteration coefficients a,- and fa from certain innerproducts (these parameters define the
polynomial Pi, see section 1). It is obvious that the precision with which these parameters can
be determined depends quite critically upon the precision in the parameter pj. This value is
computed with the vector rj, which has ben updated in the previous iteration step as r, = s-Ujt.
In that expression s represents the residual after the BI-CG part of the iteration procedure and
Ujt is the minimum residual correction in the j - t h iteration step. It is clear that when Bi-
CGSTAB is very successful, i.e., when | |rj | | < s, then rj may be expected to be less significant
than either s or t. This suggests to compute pj more accurately as

Pj = (r,rj) = (r,s-Ujt) = -Uj(r,t).

49

This has been suggested in [17] and it is stated there that the improved formula migth lead to a
reduction in iteration steps. However, this is not in agreement with what others have observed in
more realistic situations, in particular we have seen degrading effects in semiconductor modelling
problems.
As might be expected, the values of the otj and f3j that one would have obtained by carrying out
the BI-CG scheme are now better recovered by the changed Bi-CGSTAB scheme in comparison
with the standard scheme (as in section 2). But, surprisingly this does not necessarily lead to
an improved convergence behaviour. Even on the contrary, it sometimes helps to compute pj as
Pj = (f, T-J) in reduced precision (e.g., in single precision, while all other computation is done in
double precision). This is nicely illustrated by figure 3, in which we see the iteration results for
the three different cases:

• p; = (f, rj) in full precision

• pj = (f, rj) in single precision

• pj =z —u)j(f,t) in full precision

We have seen many problems where the difference with the standard algorithm was minimal (see
figure 2), but in the problems where a different convergence behaviour occurred, Bi-CGSTAB
with the "improved" pj computation required more iterations. At present we have the impression
that the changes in the convergence behaviour are correlated with a loss of biorthogonality in the
underlying BI-CG scheme, but we do not know how that could explain the observed differences.

3.3 The choice of f

In our experiments we have seen that the choice of f may have a dramatic influence on all the
algorithms in the BI-CG family: BI-CG, CGS and Bi-CGSTAB. This is well-known for BI-CG,
since one has to avoid that the innerproducts that occur in the nominators for the iteration
coefficients in that algorithm are not equal to zero (the so-called serious breakdown conditions).
Because of the relation of CGS and Bi-CGSTAB with BI-CG we encounter, at least in exact
arithmetic, the same problems at exactly the same iterationsteps as in BI-CG.
In practice one tries to avoid such situations by taking f = r0, so that at least no breakdown
will occur in the very first step. For symmetric matrices one can prove that this choice does not
lead to serious breakdown situations. Though in practice for more general situations this choice
does not lead to breakdown problems, it may be responsible for the notorious wild convergence
behaviour of CGS and even for some local fluctuations in Bi-CGSTAB.

In order to understand the effects that may take place we consider the case where A is
symmetric positive definite, and we take first f = r0. BI-CG now delivers the same results as
the Conjugate Gradient algorithm. Let us denote the eigenvalues and normalized eigenvectors
of A by A,- and ZJ, and write ro = YitiZj-
Then the residual r, ~ in BI-CG can be written as (cf. section 1)

3

50

i.e.,
2

.7

and BI-CG (or CG) leads now to the polynomial for which (rf1 CG,A-1rfI CG) is minimal,

{TBI-CGA-irBI-CG) = Y^PHh)t

\\rfl-CG\\l = EpH^h]
is minimal. Furthermore,

and

i
When a certain -yk is small, i.e., the starting residual is deficient in the fc-th eigenvector, then
P,(Ajt) may be rather large (as long as Pf{^k)lll^k is small this does not contribute much to the
norm to be minimized), and it may be even so large that the term Pi{^k)ll is large compared
with \\rf I~CG\\l. This helps to explain why \\rcG5||2 may have large peaks even in cases where
the \\rf / _ C G | | 2 converge quite smoothly.

Now it is easy to prove that with f = Y,$jzj a polynomial P, is constructed such that

i 3

is minimal, provided that fjSj > 0 for all 7j ^ 0.
With the choice 6j = ±-, when 7_, ^ 0, P; minimizes the expression £P,?(Aj)/Aj a n d n o w if;

cannot happen that for some k the value of Pi(Xk) is large compared to the other values. Hence
we may expect in that situation a rather smooth convergence behaviour for CGS. This is exactly
what we see in experiments with this rather special choice for F.

Unfortunately, in practice we never know the spectral distribution of r0 and therefore this
approach is not very practical. But these experiments tell us that, especially in situations where
the starting residual is rather deficient in some eigenvector directions (i.e., the starting vector
XQ is already rich in some eigenvector directions, which may happen in the final stages of the
Newton iteration), then it may not be a very good idea to take f = r0. Indeed, in the final
stages of the newton iteration we have often seen that the inner iteration process, especially
when carried out with CGS, takes unexpectedly many iterations and converges quite wild. To
a lesser extent this has also been observed for Bi-CGSTAB.

Sometimes it helps to "enrich" f with the deficient directions by choosing f as

^ IMI,
IMI

for some suitable vector y jt 0.
For instance, when solving the nonlinear system F(y) = 0 with Newton's method:

yi = yi-i - f ^ V 1 Hvi-i) = vi-i + Su

51

then the Newton correction Si is determined by solving the linear system

In this case we suggest to take

f = r ° + I, ° ii y«—1
\\yi-i\\

for any member of the BI-CG family. Our limited experience with this choice, when solving the
inner iterations in the Newton process for semiconductor problems is promising sofar.
Others suggest to take F as a random vector, which in view of the foregoing analysis also might
help to alleviate the problem of deficient eigenvector directions.
Note that for both choices most likely the restriction Sjfj will not be satisfied, but we do not
know how serious that condition is with respect to the convergence behaviour of the BI-CG type
methods.

4 Vector and Parallel aspects

Major part of the iteration schemes for CGS as well as Bi-CGSTAB are trivially vectorizable
and parallelizable. The only part that really needs attention is the preconditioner. Sofar we
have quite a lot of experience with incomplete choleski preconditioning [7] for the discretized
and linearized semiconductor equations in each gummel or newton step. These preconditioners
can be vectorized on regular grids as is shown in [15], without any change in the convergence
behaviour nor the computational complexity.
By constructing so-called nested twisted incomplete decompositions ([14], [15], [3]) we can in­
troduce a modest amount of parallelism in the preconditioner (e.g., 8 parallel parts for regular
3D grids), while retaining most of the vectorizing properties.

For semiconductor device modelling we have build up some experience with these twisted
incomplete factorizations in 2D models (4 parallel parts obtained by numbering the unknowns
from 4 corners on inwardly in the domain). In our experiments this has also reduced the total
computational work, sothat this approach has proven to be whorthwhile even on nonparallel
computers.
Experiments carried out on a CRAY X-MP/2 and a Convex C240 have led to reductions in wall
clock time (on dedicated systems) by factors of about 2 for the 2-processor CRAY and 3.3 for
4-processor Convex , without significant increases in the total CPU-times [16]. Also on loaded
systems this approach is reported to have advantages.
Further increases in the amount of parallelism are suggested in [3]. The idea is to combine the
nested twisted factorization with incomplete decompositions obtained over slightly overlapping
diagonal blocks in the matrix. The latter technique is proposed in [2].

References

[1] G. BRUSSINO AND V. SONNAD, A comparison of direct and preconditioned iterative tech­
niques for sparse unsymmetric systems of linear equations, Int. J. for Num. Methods in
Eng., 28 (1989), pp. 801-815.

52

[2] G. R. DI BROZOLO AND Y. ROBERT, Parallel conjugate gradient-like algorithms for solving
sparse non-symmetric systems on a vector multiprocessor, Parallel Computing, 11 (1989),
pp. 223-239.

[3] J. J. DONGARRA, I. S. D U F F , D. C. SORENSEN, AND H. A. VAN DER VORST, Solving
Linear Systems on Vector and Shared Memory Computers, SIAM, Philadelphia, PA, 1991.

[4] M. DRIESSEN, Some practical problems in the numerical solution of elliptic partial differ­
ential equations, master's thesis, Catholic University of Nijmegen, 1986.

[5] R. FLETCHER, Conjugate gradient methods for indefinite systems, vol. 506 of Lecture Notes
Math., Springer-Verlag, Berlin, 1976, pp. 73-89.

[6] M. H. GUTKNECHT, Variants of bicgstab for matrices with complex spectrum, preliminary
report.

[7] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for linear
systems of which the coefficient matrix is a symmetric m-matrix, Math.of Comp., 31 (1977),
pp.148-162.

[8] N. M. NACHTIGAL, S. C. REDDY, AND L. N. TREFETHEN, How fast are nonsymmetric
matrix iterations?, Tech. Report 90-2, MIT, Cambridge, MA, 1990.

[9] S. J. POLAK, C. DEN HEIJER, W. H. A. SCHILDERS, AND P . MARKOWICH, Semiconductor
device modelling from the numerical point of view, Int. J. for Num. Methods in Eng., 24
(1987), pp. 763-838.

[10] C. POMMERELL AND W. FiCHTNER, Pils: An iterative linear solver package for ill-
conditioned systems, Tech. Report 91/5, ETH Zurich, 1991.

[11] J. RUTTEN, Preconditioned iterative methods for solving linear systems with a non-
symmetric coefficient matrix, master's thesis, Catholic University of Nijmegen, 1987.

[12] Y. SAAD AND M. H. SCHULTZ, Gmres: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J.Sci.Statist.Comput., 7 (1986), pp. 856-869.

[13] P . SONNEVELD, Cgs: a fast lanczos-type solver for nonsymmetric linear systems, SIAM
J.Sci.Statist.Comput., 10 (1989), pp. 36-52.

[14] H. A. VAN DER VORST, Large tridiagonal and block tridiagonal linear systems on vector
and parallel computers, Parallel Comput., 5 (1987), pp. 45-54.

[15] , High performance preconditioning, SIAM J.Sci.Statist.Comput., 10 (1989), pp. 1174-
1989.

[16] , Experiences with parallel vector computers for sparse linear systems, Supercomputer,
37 (1990).

[17] , Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of non-
symmetric linear systems, SIAM J. Sci. Statist. Comput., (1992). to appear.

53

20.0 10.0 GOTO 80.0 100.0 120.0 110.0 IGO.O 180.0 200.0
iterations

+ : CGS; • : Bi-CGSTAB

Figure 1: Residuals for an example where CGS didn't converge

x : Bi-CGSTAB; • : Bi-CGSTAB (Pj = -uj(f,t)); + : CGS

Figure 2: Residuals for an example where CGS converged

54

10.0 20.0 30.0 40.0

iterations

x : standard p,; o : half precision PJ; + : p3 - -Uj(r,t)

50.0

Figure 3: Residuals for Bi-CGSTAB with different pj

