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Abstract 

A new treatment of the energy model of the hot carrier transport is proposed. The 
approach has been stimulated by a successful analysis of the drift-difFusion model which is 
partially based on the use of the free energy of the semiconductor device (cf. [3], [4]). Here 
an other thermodynamic potential is proposed for the energy model. As a consequence, the 
entropy density (instead of the energy or the carrier temperature) has to be chosen as a 
dynamic variable. Thus we are lead to a system of equations, which is equivalent to the 
widely accepted energy model. 

• 
The energy model or the quasi-hydro dynamical model is one of the phenomenological mod

e l s which allow the simulation of carrier transport in semiconductor devices. The specific as
s u m p t i o n which distinguishes the energy model of hot carriers from other phenomenological 
m o d e l s is that the electrons in the conductivity band and/or the holes in the valence band of a 
semiconductor device can be considered as a thermodynamic subsystem with its own temper
a t u r e . Moreover, but for simplicity only, we assume that electrons and holes have one carrier 
t empera tu re 0 in common and that the lattice temperature is a constant parameter T. The 
l a t t i c e temperature will be chosen as the unit of the carrier temperature. The aim of the paper 
i s to present a new approach to the energy model in analogy to a successful analysis of the 
drift-diffusion model realized by Gajewski and Groger (cf. [3], [4]). Although the paper is 
res t r ic ted to the Boltzmann statistics, essential parts of it can be extended analogously onto 
t h e Fermi-Dirac statistics. 

We start from a widely accepted system of equations 

-div (egrad U) = / + Q(p - n) , 

n = c n 0 ? / 2 exp((Fn + U - Ec)/Q), p = c p 0 3 / 2 e x p ( - ( F p + U - £ „ ) / © ) , 

n +div j n - -R, P +div j p = -Ri 

| [ ( n + p)0]- + div (jVn+jVp) = - 3 0 £ - ^(nwn + pu,p)(0 - 1) 

+ ;'„ grad (U - Ec) - jpgrad (U - Ev), 

j n = -Angrad Fn - {Bn -(Fn + U- Ec)An/Q)grad 0 , (1) 

j p = +Apgrad Fp - (Bp - (Fp + U - EV)AP/Q)grad 0 , 

j V n = -QBngrad Fn - Q(Cn - (Fn + U - Ec)Bn/6)9Tad 0 , 

jVp = QBpgrad Fp - ®{CP + (FP + U- Ev)Bp/e)grad 0 , 
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which models the transport of hot carriers in semiconductor devices (cf. [1], [2], [5], [7], [8]). 
Therein U, Fn and Fp denote the scaled electrostatic potential and the electrochemical potentials 
of electrons and holes, respectively. The scalars e > 0, cn > 0, cp > 0, Ec, Ev and the doping 
profile / are given functions of the coordinates (Q = q2/kT > 0 is,a constant). The ne t to 
recombination rate R is described as usually by Shockley-Read-Hall and Auger terms. The 
other coefficients wn, u)p, An, Ap, Bn, Bp, C„ and Cp are considered as given material functions 
which may explicitely depend on the coordinates and which depend on the state variables in 
general. Such coefficients can be obtained either experimentally or by modelling scattering 
integrals in the Boltzmann equation for the distribution functions of electrons and holes. 

For momentum relaxation times which depend on a power f3 of the kinetic energy of carriers 
(e.g. f3 = - 1 / 2 ) , one obtains 

An = (ine
0n, Bn = {5/2 + {3)An, Cn = (7/2 + (3)Bn 

with a material function fin > 0. Unfortunately, such special momentum relaxation times 
are not general enough. For a better numerical simulation it will be necessary to describe 
properties of the coefficients more exactly. Besides measurements more qualitative descriptions 
are desirable. Under rather general assumptions the coefficients An, Bn, C„ depend on 0 and 
on the state variable zn :- (Fn + U - Ec)/Q. Meanwhile An, Bn, Cn and Dn :- Cn - B?

n/An 

depend rather strongly on 0 , these functions are expected to vary rather mildly with zn and 
the quotients Qn := Bn/An, C„/B„ are expected to depend rather weakly on the temperature 
too. Furthermore, the coefficients should have positive values ordy. 

Of course, the above system of partial differential equations is to be supplemented by bound
ary conditions. Up to now we divide the boundary dCl of the domain fi in two parts TQ and I \ 
On To Dirichlet data are given, but on T we choose some natural boundary conditions which 
include the normal derivatives duU, duQ and the normal components vjn, vjp etc. of current 
densities and which admit boundary conditions of the third kind too. Heterogeneous materials 
are permitted if the interfaces do not carry additional dynamic variables. 

1 An Equivalent System 

If one looks for thermodynamic potentials which might be applicable as Ljapunov functions for 
the evolution equations or in controlling the step width in the time discretization (cf. [3], [4]) 
the so-called thermodynamic potential 

fln + 9p c „ 0 5 ' 2 e x p zn C p 0 5 / 2 e x p zp=:g{Fn,Fp,e;U) 

(zp = ~{FP + U --Ev)/Q) of the two-component carrier gas in exterior potentials Ec - U or 
— Ev + U, respectively, is a good candidate, since the 3 x 3 matrix of the second order part ial 
derivates is definite, meanwhile the free energy as a function of n, p , 0 does not have this 
property. This can be proved by applying the Routh-Hurwitz criteria onto the characteristic 
polynomials of the corresponding matrices. The conjugate variables of Fn, Fp and 0 , with 
respect to this potential are the densities n, p and the entropy density of the two-component 
carrier gas. Thus we are lead to an equivalent system of equations 

n 

P 
s 

+ div 

. J» . 

— 
0 
0 

} ( n a ; n + p W p ) ( 0 - l ) / 0 

-R 

1 
1 

O ~~ Zn Zp 



(2) 

0 
VFn.jn-VFp-jp + VQ-j3 

instead of the particle and energy balance equations, where 

jn 

jp 

. i» . 
= -

An 

0 

-*3n ~ Zri-fi-n 

0 

K 
"P ~ zpAp 

&n zn ^ n 

"p ~ zp-™-p 
(B„-znAn)

2 
{Bn~ZAn) + frac(BP - zPAp)2Ap + Dn + Dp 

VFn 

- VFP 

V 0 

The system of equations reveals the symmetry of Onsager's relations. The coefficient matrix 
i n the system of current equations is definite such that the leading terms in the nonlinear system 
of equations define a nice operator from the mathematical point of view. The terms on the right-
h a n d side of the entropy balance equation can naturally be interpreted. In particular the third 
t e r m is the nonnegative entropy production of the carrier and entropy current. It can be written 
w i t h the coefficient matrix of these currents in a very symmetric way. 

2 The Thermodynamic Potential for a Gas with a Consistent 
Potential 

W e have to modify the thermodynamic potential g in such a way that it becomes the thermo
dynamic potential of the two-component carrier gas with a consistent electrostatic potential. 
T h e necessary modifications become more accessible if we consider the Legendre transform of 
g which is defined by 

u(n,p, s; U) := nFn - PFP + Qs + g(Fn, Fp, 0 ; U). 

T h e transform turns out to be the more familiar energy 

u(n,p, s; U) = j[(n + p)0 + n(Ec - U) - p(Ev - U). 

T h e potential U = Ucxl + Uinl is split up in the sum of an exterior potential and an interior 
potential. The exterior potential is determined by the bias voltages and by the doping profile. 
L e t us denote V„ := Ec - Ucxt and Vp := Ev - Ucxt. The interior potential Uinl = P(p - n) is 
t h e solution of the Poisson equation -div (egrad U) = Q(p — n) with homogeneous boundary 
conditions. The energy density of the two-component carrier gas is 

3 1 
« = - ( n + p) + nVn - pVp + - (p - n) • P(p - n). 

I n accordance with this modification the thermodynamic potential is 

g=-(n+ p)0 - - (p - n) • P(p - n). 
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Since the additional term contains an integral operator P , the thermodynamic relations can 
no longer be formulated in the language of the densities of state variables and their part ial 
derivatives, but functional derivatives must be considered. Let us consider e. g. 

G(F n , Fp, 0 ) = - J [(n + p)Q + \{p - n) • P (p - n) dx. 

The functional derivative dpnG may be denned as a Frechet or Gateaux derivative, i. e. as a 
linear functional on a function space like 

V := i / ^ f i u r ) = { t f £ i / 1 ( n ) : t ; | r D = 0 } . 

A special class of functionals on this space are denned with functions n £ Lr(Q) (r > 1 \n 

two dimensions or r > 6/5 in three dimensions) by ^ r[/fd/X f X*u "H-iX, \M*-\< 

(dFnG,v) = - J nvdx (3) 

-In this geftee the thermodynamic relation dfn G — —n can be derived. Additional difficulties arise 
from the fact that the functional dependence G = G(Fn, Fp, 0 ) cannot be described explicitely. 
Indeed, the dependence of n and p upon Fn, Fp and 0 is given only implicitely by the state 
equations 

n = cnQ
s'2 exp((F„ + P (p - n) - V n ) / 0 ) , (4) 

p = c p 0 3 / 2 e x p ( - ( F p + P (p - n) - VP)/Q). 

Remember that these are the familiar state equations with U = Ucxi + P(p - n). The relation 

n = N(., F„, Fp, 0 ) which assigns the density n to the functions Fn, Fp, and 0 is not a Nemickij 

operator as in the case of an exterior potential. Unfortunately, here is not space enough to derive 

(3) from (4) even in a naive way, which would, however, illuminate the correct mathematical 

treatment too. Let Fn, FP, 0 6 i / ! ( n ) , 0 < a < 0 , represent the Dirichlet data of functions 

(Fn, F p , 0 ) € (Fn,FP, 0 ) + V3. We consider 

G (Fn, Fp, 0 ) := G(Fn, F p , 0 ) - G(F„ , FP, 0 ) 

and 

U (n ,p , s) := J[n(Fn- Fn) - p(Fp- FP) + s{0- e)]dx+ G (Fn, F p , 0 ) , 

where n, p, s, F n , F p , and 0 are coupled by (4) and by 

s:=l(n + p)-n- log(n/cnQ^2) - p • log(p /c p 0 3 / 2 ) . 

3 A Ljapunov Function 

Let us consider {J [ n(0>P(0> 5(0] f ° r a solution of the transient problem (2) with initial values 
n° , p° , s° and let Fn(t), Fp(t), Q(t) denote the corresponding functions. Then we have 

dt 
U [n(t),p(t),s(t)] = J j n (t)[Fn(t)- Fn}- P (t)[Fp(t)- FP}+ i (*)[©(«)- § ] } dx (5) 



since the other terms which arise in differentiating like / n Fn dx and 

(dFn G,Fn) = {dF„G,Fn) = - jnFndx 

cancel each other. Because F„(t)- Fn,... G V, the equation (2) in its variational form can 
b e applied to (5). The aim of further analysis might be to derive estimates of the "energy 

norm" U [n(t),p(t),Q(t)} of a solution by means of the initial value U (n°,P°,s°) and by 
estimating the arising right-hand sides. To illustrate this perspective, we consider boundary 
values 0 = 0 = 1, Fn= Fn = const, Fp= Fp = const, which are compatible with a partial 
equilibrium (only constant values Fn = Fp = F are compatible with the equilibrium). For such 
boundary values we get the estimate 

pj[n(t),p(t),s(t)} = J [n (Fn - Fn)- P (Fp - Fp)+ s (0 - 1)] dx = 

J [j„V(F„ - Fn) - R(Fn - Fn) - jpV(Fp - Fp) + R{FP - Fp)+ 

+j,V(e - 1) - | W w ^ ( e - l ) 2 - Jl(3 - z n - zp)(Q -l)# -

- ^ 0 ^ « V F « " 3PVFP + i»'vT0)(0 - 1 ) 

< 
/ -

dx < 

3 0 - 3 + 
F„ - Ec - Fp + Ev 

0 
Fn + Ec + Fp — Ev dx. 

4 The Equilibrium 

T h e system (2) should describe at least the equilibrium in an unique way. We remark that there 
is a solution of the equilibrium. Indeed, 0 = 1, Fn = Fp = F and a solution U of the nonlinear 
Poisson equation in which 

p - n = cpexp{-F - U + Ev) - cn exp(F + U - Ee) 

•was substituted is a solution of (2). Now we assume that there would be still an other solution 
Fn, Fp, 0 , n, p, s, U with 0 > 0. Then the stationary version of (2) in the variational form 
fo r special test functions Fn - F,... 6 V provides 

0 = J[jnV(Fn -F)- R(Fn -F)- jPV(Fp -F) + R{FP -F) + j . V ( 0 - 1 ) -

_|™-=+efc(e _ 1}2 _ R{z _2n_ Zp){Q _ 1 ) # . 

- # | ( i „ V F n - jpVFp + i .V0) (0 - l)]dx < 
(6) 

< - / A [30 3 + ^n~"c~-/*p + &i; + Ec-Ev\dx 

The equilibrium is uniquely determined by the system (2) (in a suitable function space), if 
t h e integral on the right-hand side is nonnegative and vanishes for 0 = 1, Fn = Fp = F only. 
W e introduce the usual recombination term 

Fn — Ec — Fp + Ev 

0 
R = r0(np - np) = cncpr0 03exp - exp(Ev - Ec) 

®3exp[Fn-Ec-Q
Fp + Eu+Ec-Ev 1 
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with positive coefficients ro, r which may depend on the coordinates and on state variables. In 
this case, unfortunately, the integrand on the right-hand side of (6) is not "quite" definite. 

5 Conclusion 

The various forms of the energy model are in some sense decisively more complicate than the 
drift-diffusion model. The single equations are coupled by terms which contain not only the 
unknown functions, but its derivatives too. Furthermore, the lower order terms contain the gra
dients of the sought functions quadraticly such that the existence of solutions is a mathematical 
question for which there is no ready-made answer in the theory of partial differential equa
tions. We consider it worthwhile to study the various equivalent systems numerically as well 
as from the point of view of the mathematical analysis. In the moment we are concerned with 
implementing the first version in close analogy to the two-dimensional semiconductor analysis 
package TOSCA, but I would like to hint that the second version of the model offers us quite 
another iteration strategy which seems to be close to the Gummel scheme. 
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