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ABSTRACT 

The influence of self-heating by power dissipation on the 

operation of semiconductor devices proves to be important not 

only in the area of power electronics, but also for VLSI 

devices. Hence, besides the carrier densities (or quasi-Fermi 

potentials, alternatively), temperature has to be included as 

additional dynamic state variable in the simulation of the 

electric and thermal behavior of such devices. However, up to 

now only heuristically introduced heat generation terms have 

been proposed as source in the heat conduction equation. 

It is the scope of this paper to present a physically rigorous 

extension of the 'classical' (= isothermal) device equations to 

the case of variable (= space- and time-dependent) temperature 

which is based on the principles of irreversible thermodynamics 

(e.g., Onsager's relations and conservation of total energy) 

and, moreover, which is consistent with the models usually 

considered within the framework of the widely accepted iso­

thermal drift-diffusion approximation. It turns out in the 

present theory that the heat sources can intuitively be inter­

preted as sum of the Joule heat and Thomson heat of both the 

electrons and the holes plus a term accounting for carrier 

recombination. 

A critical comparison with previous work is made; it shows 

that, in the steady-state, some of the heuristic models for 

heat generation, thermal conductivity and heat capacity could 

indeed approximate the correct results within an error bound of 

1...10Z. In the transient regime, however, none of the models 

used hitherto proves to be applicable, in particular, if short 

pulse rise times of (< 10 ns) are attained. 



84 

INTRODUCTION 

The modeling of semiconductor devices at isothermal condi­

tions is essentially based on the continuity equations for 

electron and hole flow 

(1) dv.l <9t = -div fn + G-R 

(2) $pl Bt = -div jsp + G-R 

(n,p: carrier concentrations; "f ,1 : particle current densities 
Jn Jp r 

of electrons and holes; G,R: generation- and recombination 
rates) 
and Poisson's equation 

(3) divCfi^Y ) = q (N^ - Np + n - p) 

(f : dielectric constant; iii -. electric potential; q: elementary 

charge; N7 , N^ : concentrations of ionized acceptors and 

donors). In order to arrive at a closed system of equations, 

the particle fluxes j and j are commonly written as quasi-

linear functions of driving forces in gradient form 

^ 3n = ?n ^ > cPn 

(5) Tp = - Pv P VCpp 

(pn,p : mobilities; cpn, (p : quasi-Fermi levels) 

with the driving potentials, cp and CfD, being functions of 

the electric potential, %fJ , and the carrier densities, n and p. 

In the case of a non-degenerate semiconductor, for instance, 

cpn and cp are implicitly defined by Boltzmann relations 

(6) n = n i e exp(("lp - <pn) /UT) 

(7) p = n i e exp((cpp - y)/UT) 

(n- : effective intrinsic concentration; UT = kT/q: thermal 

voltage, with k: Boltzmann constant) 

leading to the well-known representation of j n and j as sum of 

a drift and a diffusion component. 
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In most cases, however, a semiconductor device cannot be 

operated at constant temperature due to self-heating by power 

dissipation. This phenomenon is not only characteristic of 

power electronics (see, e.g., Nakagawa and Ohashi, 1984), but 

also of growing importance in the area of VLSI and ULSI devices 

(Takacs and Trager, 1987). Hence, to account for non-isothermal 

effects in device modeling, a heat flow equation 

(8) c-(9T/9t) = div ( KVT) + H 

(c: heat capacity; |<: thermal conductivity; H: heat generation) 

must be added to the dynamic equations (l)-(2). Several propos­

als have been made for the heat generation model, H. So Gaur 

and Navon (1976) introduced H as Joule heat 

(9) H = I-~E 

(j: electric current density; E: electric field), 

while Adler (1978) suggested 

(10) H = - div (EcTn - Ev]p) 

(Ep.Ey: band edges of conduction and valence band), 

Chryssafis and Love (1979), on the other hand, recommended 

(11) H = q-div ( C p j ; - cppTp) 

Independently hereof, Elschner (1979) proposed 

(12) H = q-div (Cpn3"n - cppjp - eyldZldt)) 

Since all these models for H have been introduced by more or 

less heuristic reasoning based on ad-hoc assumptions, the 

obvious discrepancies are not very astonishing. 

To clarify the situation, a rigorous thermodynamic approach 

to thermal generation is evidently required. It is the scope of 

this paper to present such an approach under the additional 

constraint that the extension to variable temperature should be 

consistent with the model equations (l)-(7) and should not 

violate any of the underlying postulates. 
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REVIEW OF THE BASIC ASSUMPTIONS 

Before starting any attempt to extend the 'classical' device 

equations (l)-(5) to the non-isothermal case, we should clearly 

be aware of the underlying basic assumptions: 

First of all, we deal with a phenomenological transport 

theory based upon the postulate that, even if we are far away 

from the thermodynamic equilibrium of the entire device, the 

electron and the hole subsystem, each of them per se, is lo­

cally in equilibrium; thus, at a position ~r and a time t, any 

accessible state can be uniquely characterized by a temperature 

Tn(r,t) and T (r\t), respectively, and a quasi-Fermi level 

cpn(r,t) and ep (r\t). In the same way, the states of the sub­

strate lattice are uniquely determined by a lattice temperature 

T^(r,t). The three subsystems are able to interchange energy 

with each other by various scattering mechanisms. So, for in­

stance, energy can be transferred from the free carriers to the 

substrate via lattice scattering or (ionized) impurity scatter­

ing; by carrier-carrier scattering, energy flow between elec­

trons and holes is enabled. Furthermore, there is also particle 

flow between the electron and hole system which is supported by 

various recombination and generation processes; since each of 

them involves energy exchange too, additional energy flows are 

induced (to the lattice, for example, by the SRH mechanism 

generation/ 

recombination 

Fig. 1: Composite thermodynamic system comprising the 

subsystems of electrons, holes, and the substrate lattice 

(dashed lines denote energy (heat) flow, solid lines denote 

particle flow). 
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(Shockiey and Read, 1952; Hall, 1952) and between the free car­

riers by Auger recombination). If radiative recombination and 

optical generation are neglected, the composite thermodynamic 

system comprising lattice, electrons, and holes (cf. fig. 1) is 

closed with respect to both particle and energy flow; hence, 

particle conservation (eqs. (l)-(2)) and energy conservation 

(eq. (15) in the next section) are valid. 

Second, by omitting all hot carrier effects, we arrive at 

the postulate that the electrons and the holes are in thermal 

equilibrium with the lattice. Thus the electron and hole tem­

peratures, T (r,t) and T (r\t), are set equal to the substrate 

temperature, TL(r,t), which under isothermal conditions is 

equal to a constant T. Hence, solely the quasi-Fermi levels, 

cpn(f,t) and- Cp (r\t), are left as dynamic variables; within 

the framework of the commonly used drift-diffusion approxima­

tion (see, e.g., Bonc-Bruevic and Kalasnikov, 1982), their 

spatial gradients, 7"cpn and V C P , are the forces driving the 

particle currents j n and 3p> respectively (cf. eqs. (4)-(5)). 

Third, to obtain a closed system of dynamic equations for 

CPn and cp (or, equivalently, for the carrier concentrations n 

and p), we need to specify in which way cp and cp depend on 

n and p. Usually, this is done by introducing Fermi statistics 

(or, as approximation, Boltzmann statistics) and by assuming 

that the electric energy of the composite system is of purely 

electrostatic nature. In this way, each of the quasi-Fermi 

levels may be written as the sum of an electric potential op and 

a chemical potential. While the latter is a local function of 

the carrier densities and temperature, the electric potential 

depends non-locally on the carrier distributions n{r\t) and 

p(rv, t) via Poisson's equation (3). Note that *y is not a dyna­

mic variable, but only an auxiliary quantity which couples the 

dynamic variables at a position "r' to those at a position ~r 

quasi-statically (i.e. at the same time t) via an integral 

operator (= inverse Laplacian). Hence, the above assumptions do 

evidently not allow for electric fields which rapidly vary with 

time (and thus contradict Elschner's (1979) derivation of the 

total power loss density in semiconductors). 

In the case of a non-degenerate semiconductor, the quasi-

Fermi levels are easily calculated by inverting eqs. (6)-(7): 

(13) cpn = y - UT ln(n/nie) 



88 

(14) cp p = y + uT ln(p/nie) 

In the sequel, we will make use of these relations, whenever an 

explicit functional form for cp and Cp is required (e.g., 

for the estimation of magnitudes). 

CONSISTENT EXTENSION OF THE CLASSICAL SEMICONDUCTOR EQUATIONS 

TO VARIABLE TEMPERATURE 

To be consistent with the isothermal device equations, we 

adhere to all the assumptions in the foregoing paragraph, with 

the sole exception of constant temperature. Instead, we regard 

temperature now as additional dynamic variable which may be 

position- and time-dependent: T = T(r\t). In order to obtain a 

dynamic equation for T, we calculate the total differential 

energy density duf t and the total energy flux Jtot of the 

composite system of lattice and carriers, with n, p, and T 

being chosen as independent dynamic variables. Then, making use 

of the principle of energy conservation, 

(15) 9 u t o t / S t + div ftot
u = 0 

we will arrive at a partial differential equation for T, which 

completes the dynamic system (l)+(2). 

To begin with, the phenomenological current relations (4)-

(5) have to be supplemented by an additive term proportional to 

the gradient of T which acts as additional driving force (see, 

e.g., Callen, 1960) : 

(16) j ; = ^ n n . ( ? c p n - P n 7 T ) 

(17) t p = - p p P . ( 7 > p + P pVT) 

The coefficients P and P„ are the thermoelectric powers asso-n p 

ciated with the electron and hole system, respectively, and 

represent new model quantities. 

Similar to the particle fluxes, the heat current densities 

of the carrier subsystems are linear combinations of the gradi­

ent of the respective quasi-Fermi potential and the temperature 

gradient: 
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(18) j ^ = n(qMnPnT?cfn - (2 n/T)VT) 

(19) 3pQ = -p(qppPpT?Cpp + (X p/T)7T) 

Note that not all kinetic coefficients arising in eqs. (16)-

(19) are independent: As a consequence of Onsager's fundamental 

reciprocity theorem (Onsager, 1931), the thermoelectric powers 

determine not only the particle flow due to a temperature gra­

dient, but also the heat flow due to a gradient of the quasi-

Fermi levels. Through eqs. (18)-(19), therefore, solely % and 

^ enter into the theory as new quantities. Instead of these, 

usually the thermal conductivities of the electron gas and the 

hole gas, 

(20) K ni= n(CL n/T) - qpnPn
2T) 

(21) Rp:= p(( a.p/T) - qPpPp
2T) 

are introduced as independent model quantities, because they 

are easier accessible in theory and experiment. 

Since heat transport in the lattice subsystem does not 

involve any particle fluxes, the heat current density of the 
—> 

lattice is proportional merely to VT: 

(22) 3 L Q = " K L " ^ T 

where K., denotes the thermal conductivity of the substrate 

lattice. 

The energy current density of each subsystem is the sum of 

heat flux plus the product of particle flux multiplied by the 

respective electrochemical potential; therefore the total 

energy current density reads: 

^") TtotU = - * L ^ T + JnQ - WX + 3p
Q + qcPpIp 

Next, let us turn to the calculation of the differential 

energy densities: For the lattice, we have simply 

(24) duL = cLdT 
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with cL being the heat capacity of the lattice. By applying the 

usual formalism of classical thermodynamics (e.g., Maxwell's 

relations), the energy densities of electrons and holes, 

respectively, can be represented in the differential form 

(25) dun = cndT + q[T(3c f n/3T) n i p - cpjdn 

(26) dup = cpdT - q [ T O c p p / S T ) n i p - cpp]dp 

Here, cn and c are the heat capacities of the electron gas and 

hole gas, respectively; (3 /3T) stands for the partial 
n, p 

derivative with respect to T at constant n and p. The second 

terms in (25)-(26) account for the fact that any change in the 

carrier concentrations (at constant temperature) results in a 

certain amount of energy interchanged between the constituent 

subsystems. 

Inserting 

(27) du t o t = duL + dun + dup 

and Jtot
U (cf. eq. (23)) into (15) yields the following 'heat 

conduction equation': 

(28) c t o t-(8T/9t) = div ((Ctott7T) + H 

where c t o t = cL + cR + c is the total heat capacity, 

K t o t = & L + Kn + K is the total thermal conductivity, and 

<29) H = qj"n
2/(unn) + qtp

2/(/ipp) + 

+ q ( R - G ) [ l O < p n / a i ) n i p - Cpn - T ( 9 c p p / S T ) n | p + c p p ] + 

+ q T [ O c p n / 3 T ) n ] p - P n ] -d iv Tn - q T [ ( 9 C p p / 9 T ) n i p + Pp] div T p -

- q T ( i ; . ^ + %-v\) 

is a quantity which will be discussed in the next section. 

Here, only the contributions of electrons and holes to the 

total heat capacity and thermal conductivity shall briefly be 

estimated: Assuming parabolic energy bands, we deduce from the 

free electron heat capacity that c„/cL < 1 Z and c /cL < 1 X if 
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only n < 10 cm""5 and p < 10" cm" , respectively. If we fur­

thermore suppose that mobility and thermal conductivity of the 

carriers obey a Wiedemann-Franz law, we obtain K_/K.T < 1 I 
TO _ *> 

and X- / K-, < 1 Z for carrier concentrations less than 10 cm . 
P L 

In the case that the carrier densities should exceed 

this number, heavy doping effects on the lattice conductivity 

K, have also to be taken into account, and the experimental 

data (Maycock, 1967} indicate that the latter is dominant. 

DISCUSSION OF THE THERMAL GENERATION TERM 

The stationary case 

In the steady-state, div j and div j in the third line of 

eq. (29) can be substituted by the generation/recombination 

rate G-R, and thus the heat source term H may be rewritten as 

(30) H = q7n
2/(Hnn) + qjp

2/(ppp) + 

+ q(R-G)[q>p -qpn + T(Pn+Pp)] - qT<Tn7Pn + Tp^p) 

Evidently the first two terms are the Joule heat of electrons 

and holes, the third one is the recombination heat, and the 

fourth one is known as Thomson heat (see, e.g., Callen, 1960). 

Except that the thermoelectric powers P and P appear in (30), 

it is in agreement with the results of Elschner (1979) and 

Chryssafis and Love (1979), when specialized to steady-state 

conditions. To estimate the corrections induced by P and P , 

we concentrate on the recombination heat, because here the 

major effect is to be expected. Theoretical investigations 

(Stratton, 1972; Bonc-Bruevic, 1982; Dorkel, 1983) predict PnT, 

P T £S(0.5 ... 5)UT; the experimental findings (Herring, 1958) 

are about 17«UT (at 300 K). So PRT and P T are not unlikely to 

exceed cp - cp in (30) and, therefore, must not be neglected 

if the recombination heat becomes comparable with or much 

greater than the Joule heat. That such situations may occur has 

clearly been demonstrated by computer simulations (Elschner, 

1979). 
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rhe transient case 

In contrast to the steady-state, it is unfortunately not possi 

ble to eliminate the div £ and div fp terms in eq. (29) s i m p i y 

by inserting the particle continuity equations (l)-(2) because 

then the time-derivates of the carrier concentrations would 

appear on the right-hand side of (28). On the other hand if 

ake use of the current relations (16) and (17) to evaluate 
we 

mal 
_, " " "" " „. " Xiu; a u u I-L/J to evaluate 

div j n and div Jp) we obtain second order derivatives with 
re . . . _ _ ." ' ....,.„ __ _ 

Dtic 

respect to position vrtiich structurally belong to the ellipt 
part of the parabolic operator associated with the system 
(l)+C2)+(28). Hence, it seems most appropriate to rewrite (28) 
in divergence form 

(31) c t o t.(9T/at) =div (a T T?T + . T n ^ n + a T p f v + H , 

with the modified source term 

T» -> 

(32) H' = qjn7qpn - q J p F 9 p + 

+ q ( R - G ) [ T ( 3 < p n / a T ) n i p . c p n - T ( a c p p / a T ) n ) p + ^ 

- tJi^Ocpn/5T)n<v] + T p f [ q T ( S c p p / 9 T ) i i > p ] 

and the coefficients 

(33) a T T = R t o t + qFnnTPn[Pn . 0<p n/3 T ) n f p] + 

+ qHppTPp[Pp+ 0<p p/3T) a i p ] 

(34) aTn = - qpnnT-[Pn - Oqp n/d T)n>p] 

(35) a T p = qFppT-[Pp + ( ^ ^ 1 , ^ , 

Note that H' is not the total thermal generation rate, beca 
the flux under the div-operator is not the total heat' &USe 

density. rrent 

For a more detailed interpretation of H", we must specifv 

the model for Cfn and cpp. For the sake of simplicity l e t 

use eqs. (13)-(14) here, with n i g being the intrinsic'concen" 

tration of an idealised semiconductor (having parabolic energy 
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bands with constant effective masses); the extension to the 

general case is straightforward. Differentiating eqs. (13)-(14) 

with respect to T yields 

(36) T O c p n / 9 T ) n i p = T O - y / 3 T ) n i p + cpn - y + 3 /2 UT + E g / ( 2 q ) 

(37) T O < p p / 8 T ) n i p = T ( 9 y / a T ) n ) P + <pp - y - 3 / 2 UT - E g / (2q) 

(E denotes the band gap). 

In the case of completely ionized donors and acceptors, the 

electric potential "y does not depend on temperature; this 

supposed, we are able to continue the evaluation of H': 

(38) K' = ~y~E + (R-G)(Eg + 3kT) - (3^ + T pH
3/2 k ? T + 1/2 V E ) 

(j: electric current density; E: electric field) 

and arrive at a very attractive result: The first term is the 

classical power loss in an isothermal unipolar conductor, while 

the second one accounts for the energy exchange with the lat­

tice through recombination or generation of electrons and holes 

whose energy is 3/2 kT above the conduction band edge or 3/2 kT 

below the valence band edge, respectively (in exact agreement 

with the thermal average values!). The third term contributes 

corrections for a non-constant temperature distribution and 

variations of the band edges. 

It is interesting to consider (38) at steady-state 

conditions; in this special case, H' may be written as 

(39) H' = - div [(Ec + 3/2kT)Tn - (Ey - 3/2kT)j"p] 

which, apart from the energy shifts +3/2 kT, coincides with the 

formulation by Adler (1978). Therefore, his approach does not 

necessarily contradict that of Chryssafis and Love (1979), if 

only the correctly associated energy flux is used in the 

(stationary!) heat conduction equation. 

Let us now briefly estimate the importance of the terms 
—> 

which, in addition to l< t t V T , appear under the div-operator 

in eq. (31). By means of (36)-(37) we conclude that the range 

of qT($cpn/9T) and qT (3 cp /3 T) is on the scale of the band 
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gap E ; therefore, apart from the above discussed effects in-
b —> 

duced by the thermopowers, the non-diagonal terms a™ Pip and 
a^pVCPD may be of the order of magnitude 
(E /2)|j>| S3 0.5 VAcm"2| jV cm2/A| , while R tQt V T amounts to 

I Ktot-V" T| H 1.5 VAcm"2|?T cm/K|. As has been demonstrated by 

Takacs and Trager (1987), either of these contributions will 

become dominant in VLSI devices, and hence each of the coupling 

coefficients a,™, aT„, and a- has to be carefully evaluated. 
11 i n j p J 

Moreover, by comparing (29) with (30) we conclude that the 

additional energy exchange due to the variation of the carrier 

concentrations with time in the transient regime is of the 

magnitude (E /2)(9n/9t + 9 p / 9 t ) . It is easily shown that, 

this quantity may largely exceed the Joule heat if pulse rise 

times of less than 10 ns are attained. Consequently, it is not 

allowed to extrapolate from the stationary thermal generation 

term (30) to the transient case. 

RESUME 

A physically rigorous extension of the isothermal semiconductor 

device equations to non-isothermal conditions has been formu­

lated. It has been demonstrated that temperature may be in­

cluded in the device dynamics as additional state variable 

without violating any of the basic assumptions underlying the 

isothermal case and without introducing inconsistencies with 

the models based on the isothermal drift-diffusion approxima­

tion. The given extension is also in accordance with the laws 

of phenomenological thermodynamics. 

In the steady-state, the present theory leads to a classical 

heat conduction equation with a thermal generation term which 

is composed of the Joule heat and Thomson heat of electrons and 

holes plus a contribution accounting for recombination heat. 

Within certain limits, the result of the rigorous approach con­

firms the heuristic expressions given by Eischner (1979) and 

Chryssafis and Love (1979) as good approximations. 

In the transient regime, we arrive at a heat conduction 

equation in generalized form involving each of the gradients of 

the quasi-Fermi potentials and of temperature as driving forces 

for heat. flow. For non-degenerate semiconductors, the heat 

source term consists of isothermal Joule heat and isothermal 

combination heat plus corrections for variable temperature re 
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and variable band edges; when specialized 

conditions, it is approximated by Adler's 

However, some ,a-priori estimates indicate 

above cited models for thermal generation 

transient case. 
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