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SUMMARY 

We describe here an engineerized package, named LGCAPA, 
including a specific language which allows us to describei in.a 
natural way the problem under consideration. 1 nis package 
LGCAPA provides a method for the computation of the capacitance 
matrix in multilayer interconnection environment ana in 
presence of different dielectric regions. „•„/•;„,•/* 

The approximation of the physical problem is done ^ajmue 
element technique; the threedimensional mesh is cpnstructea 
automatically from the data needed for problem description J he 
set of linear problems are solved numerically by J°W*»™C 

gradient with SSOR preconditionning algorithm. The packageurns 
been developped on a workstation of apollo type and was supported 
by the CNET. 

INTRODUCTION 

It is well known tha t the, delays introduced by the 
interconnections can limit dramatically the speed of i n l e | ™ 
circuits. The aim of this paper is to present a progiam package 
named LGCAPA allowing the exact, capacitance ca lcula t ion^tn 
use of 3.D finite elements technique on real IC e " v " o n i n ^ 
including several dielectric and metallization layers. In the speed 
range which is actually raised by Ga As or Silicon digital l . u , 
the quasi TEM approximation will be assumed. 

When the electrostatic potential V, ^ J ^ X t e r S ^ e 
the problem we have to solve in order to be able to d e t J [ m i

 t 
capacitance matrix are of Laplace type and[do n o t | r e s 
mathematical difficulties. The maior preoccupataon rcmam 
practical order essentially due to the fee a t w a re in 
environment. Data pre-processing are not so easy, 
r e su l t i ng l inear system ^ ^ i ^ e ^ T i m e T n the software 
approximation are very large : at the P i e s c n ' ,• . „ qvstem • 
- e can choose between two techniques to solve linear system , w 
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a) Cholesky decomposition 
b) SSOR-preconditionned conjugate gradient 

this last technique seems to be more efficient for large 
systems. After a presentation of the problem we want to solve, we 
will focus on data preprocessing i.e, how is obtained the finite 
element structure (mesh + physical data) needed for the 
approximation of Laplace equation, from a problem description 
which is as close as possible to the successive masks definitions in 
technological processes. 

FORMULATION OF THE PROBLEM 

From [1,2] by exemple, we obtain for a system of n conductors 
i2j ,i=l,...,n, ( see fig 1) the following definition for the capacitance 
matrix 

Fio; 1 - 5i(«fctBn of » conductors 

- The conductor number 1 is at potential 1 and the others 
conductors at potential 0, then the corresponding charges are 
denoted by 

(1) Cn,C12,...,Cln 

- If the conductor 1 is now at potential Va (the other conductors 
remaining at potential 0), from the linearity of equilibrium 
equations, the charges are now given by 

(2) C n V „ C 1 2 V 1 ) . . . ,V 1 C l n V 1 

- We exchange now the role of conductor 1 and 2, and if V2 is 
the potential of conductor 2, the charges on conductor are given by 

(3) C2l V2, C22 V2,..., C2n V2 
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and so on, for the last conductor at potential Vn and the other 
ones at potential 0, the charges are given by 

(4) C n l V n ,C n 2 V n , . . . ,C n n V n 

- Finally, if Vj is the potential of the conductor number i, the 
charge Qj on the conductor number j is given by 

(5) Qj = Is»1,n CyVi 

The n x n matrix Cy is the capacitance matrix, and we will 
see now how to compute this matrix by solving n linear problems ; 

Given n conductors Qj at prescribed potential Vj, the potential 
distribution V in a domain Q surronding these n conductors Q; ; 
(and not including their conductor) may be obtained by solving, the 
classical equation 

(6) - V.( e W ) = 0 on Q , with boundary conditions on T = d Q 

where £ is the permittivity and is a fonction of x, in general 
piecewise constant. The boundary conditions are of 
non-homogeneous Dirichlet type on boundary Tj = dQ.j of the 
conductors, and are homogeous elsewhere, we denote by F0 the 
part of the boundary with zero Dirichlet condition and Fn = dD. - F0 -
r \ ... - Fn the part of boundary with homogeneous Neumann 
condition. 

Solving (6) with prescribed potential on conductors, we obtain 
the potential distribution V which allows us to compute the charge 
Qj on the conductor j by 

(7) Q. = Jr. E VV. n ds 

where n is is the unit normal to the boundary Tj of conductor j . 

For the solution of (6) by finite element, we introduce a weak 
formulation of the problem [3]. 

Let us define the fonctionnal space 

(8) W0 = {v/v e Hi(fl), v = 0 on Tj i=0,...,n} 

with H^fi) the classical Sobolev space of L2 (Q) functions with 
derivatives in L2 (Q). 

A weak formulation of the problem (6), is given by. 
r Find V in HMO) such that 

(9) 4 V= V4 onTi i=0,...,nand 
c | n e ? V . Vwdx = 0 foral lwinW0 
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Taking into account the linearity of the problem (9) which give 
the potential distribution V, we can write 

(10) V = IW L ,n V ^ 

where (pj is the solution of the problem, 

f Find (pj in HKH) such that 

(11) * (pi = 5 i j onr i i=0,...,n 

I ) a E V (pj. V w dx = 0 for all w in W0 

where 5^ is Kronecker symbol ( 8jj = 0 if i * j else Sy = 1) 

The formula (7) which give the charge Qj on the conductor j 
may be written as 

(12) Q. = Jr. e V V . n ds = J r e V V . n w. ds 
where Wj is a function taking 8^ value on I \ (k=0,.. . ,n). 
By using Green's formula we can write 

(13) J r e V V . n w. ds = J e VV . V w, dx + J V.(e VV) w. dx 

bu t when solving (6) (or equivalently the weak form (9)), the 
second term in the right hand side is 0, so we obtain the relation 
valide for Wj e H!CQ) 

(14) Ip e V V . n w, ds = J e VV . V w, dx 

the function (pj solution of (11) satisfy the condition on Wj given 
in (12) and belongs to HX(Q) so that (14) is valid, we can write 

(15) Qj= J r e V V . n w . ds = J n e V V . V9. dx 

using (10) we obtain 

(16) Qj = J 0 e V V . V ( p . dx * S W j n V i J n e V(p. . V(p. dx 

so with (5) we obtain directly 

(17) C.. = LeVq>. . V(p. dx 

with (p. solution of problem (11). 

I t is sufficient to solve the problem (11) for i=l,. . . ,n to be able to 
compute the capacitance matrix CSj. 

We can remark tha t T0 introduced before is in general the 
connection to the ground (reference potential), but may be empty 
and this par t of boundary can be considered as a conductor; the 
capacitace matrix will be then (n+1) x (n+1) . 

The computation of capacitance matr ix is straightforward 
from (17) when using finite element for solving problem (11). 



653 

PROBLEM DESCRIPTION AND AUTOMATIC MESHING 

The problem we have to solve is described via an oriented 
language. This language allows us : 

- to define scalar variables 
- to control classical loops by keywords as 

do enddo, if then elseif else endif, repeat,... 
- to include data files 
- to use fortran type expressions. 

In addition to this a set of specific instructions are more 
problem-oriented and are used to define the problem (geometry + 
material property -see below-), to set parameters values in order to 
control the mesh refinement (in 2D and 3D), to call specific 
modules (2D_mesh_generator, 3D_mesh_generator, capacitance 
calculation,...) 

The major restriction in geometrical description, a t present 
t ime, is t h a t any subdomain, or par t of subdomain (conductor; 
dielectric) has to be defined as cylindrical region i.e. by giving the 
following data : a set of node coordinates (xj,yj),i=l,N which 
describe a contour in (X,Y) plane, with two height (hx,h^) which 
localize this region in the Z-direction. These data are sufficient for 
the geometrical subdomain description in our restricted context; 
we have to complete these data by the relative permittivity if the 
subdomain is a dielectric or by a number (in order to give a serial 
number to each contact) if the subdomain represents a conductor. 

The description (and construction) of the computat ional 
domain is temporally dependent in the following sense: s tar t ing 
with an initial cylindrical box (in general this initial box is air ) 
each new subdomain (which is obviously included in the initial 
box) will erase the previous material definition by the current one. 

Sample example of input file for geometry description 

— variables definition for parametrisation 
— ( lines beginning with — are comment) 

x_min=-100 ; x_max=100 
y_min=0. ; y_max=100 
h0=0. ; htop =500 
hl=200 ; h2=hl+l ; h3=hl+0.5 ; 
thick=1.5 ; h4=h3+thick; 

— contour def 
— Initial box (filled with air eps=l > fig 2a 

contour eps=l ,hmin=h0, hmax=htop, 
(x_min,y_min), (x_max,y_min) , {x_max,y_max), (x_min,y_max) 

— first dielectric layer > fig 2a 
contour eps=12 ,hmin=h0, hmax=hl , 

(x_min,y_min),(x_max,y_min),(x_max,y_max),(x_min,y_max) 
— second dielectric layer > fig 2b 
contour eps=7 ,hmin=hl,hmax=h2 , 
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<x_min,y_min) , (x_max, y_min) , (x_max,y_max) , (x_min,y_max) 
— conductor inlayed in dielectric Iayer2 " > fig 2c 

— definition of characteristic points of the contour 
xl« ( xjmin + x_max ) /Z; 
x2= xl + thick; 
yl= ( y_min + y_max ) /2. - thick*. 5 ; 
y2- yl + thick ; 

contour conducteur 1 , hmiti«=h3 , hmax-h4 , 
<xl,y_min), (x2, y_min) , ( x S , y l ) , (x_max,yl), (x_max,y2), 
(x2,y2), (x2,y_max), (xl,y__max) ; 

A j* l e geometrical definition (including material property is 
ended by the following key-word end_contours; this key-word will 
activate a module which compute all the contours intersections (in 
X, i plane) define 2D subdomains, and distribute points on these 
contours, i.e. this module will prepare the data needed for a 2D 
rnesn generator. We can act on this l.D mesh (if we want because 
default values are assumed), by the mean of three parameters 
p a s m m , pasmax, nbpas which have then to be specified before the 
key-word end_contours. 

The 2.D mesh generator i s called by the key-word : maillage2d: 
two parameters coefjmesh a n d puis mesh.allows us to control the 
number of triangles generated and "the depth of refiniment. The 
2JJ mesh generator is the same as the one used in package TITAN 
[4J-

The 3D mesh generator called by the key-word : maillage3d 
construct first a mesh with pentahedrons (triangular prisms) 
derived directly from the 2D CX.Y) triangular mesh by extension in 
Z^direction (layers in Z direction are automatically detected from 
the contours definitions). I n a second step this mesh. is 
transformed in a tetrah^dr-al mesh by subdividing each 
pentahedron into 3 tetrahedrons. Then, the tetrahedreons inside 
the conductors are removed from the mesh (as they are not needed 
for potential calculation). Three parameters pasminh, pasmaxh, 
n D p a s n allows us to control the mesh refinements in the 
Z^direction (default values a r e assumed). 

With the key-word capa, t h e electric potential distributions are 
computed and after the capacitance matrix is calculated according 
to U /). ihtlerents parameters may be specified before acting the 
key-word capa, we can prescribe some boundary conditions, we 
c^n force some algorihmic variables (precision, maximum 
number of iterations in conjugate gradient) we can choose the 
technique for the solution of linear problem ( c h o l e s k y , 
gjraaient_conjugue or gradient conjugue ssor (default choice)). 
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NUMERICAL APPLICATION 

The numerical example is represented by the figure 3 and 4. 
Only half domain is needed for all potential calculations. The 
domain is composed with four different dielectrics (including air) 
and three contacts, the bottom is connected to the ground but is 
considered as a conductor for capacitance matrix computation 
(referenced as T). 

The data for problem description are the following : 
relative permittivity definition 

el = 12. ; 
e2 = 3.5 ; 
e3 = 7.4 ; 
e4 •= 1. 

heigths definition + typical points 
hO = 0 ; 
h2 «= 300 ; 
hi = h2-0.08 ; 
h3 - hi + 0.17 ; 
h4 = h2 + 0.15 ; 
h5 = h2 + 0.24 ; 
h6 = h3 + 0.15 ; 
h7 = h5 + 0.15 ; 
h8 - h4 + 1 
h9 - 600 

xl = 3.7/2; x2=xl+4; yl=0; y2=10/2; 

x_min •= -100; 
x_max = 100; 
y_min = 0; 
y_max = 100; 

— contours definition — 

contour eps=e4,hmin= h0,hmax=h9, 
(x_min,y_min),(x_max,y_min),(x_max,y_max),(x_min,y_max); 

contour eps=el, hmin=» h0,hmax=h2, 
(x_min,y_min),(x_max,y_min),(x_max,y_max),(x_min,y_max); 

contour eps=e2,hmin= h2,hmax=h4, 
(x_minry_min),{x_max,y_min),(x_max,y_max>,(x_min,y_max); 

contour eps=e3,hmin= h4,hmax=h8, 
(x_min,y_inin),(x_max,y_min),(x_max,y_maxj,(x_min,y_max); 

do i= 1,3,2 
contour conducteur i ,hmin = h2,hmax= h5, 

(xl,yl),(x2,yl),(x2,y2),(xl,y2); 
contour eps=e2 ,hmin = h5,hmax= h7, 

(xl,yl),(x2,yl), <x2,y2),(xl,y2); 
xl = -xl; x2 = -x2; 

enddo; 
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xO = ,7/2 ; 
contour conducteur 2 , hmin = hl,hmax= h3, 

(-xO,yl), (+xO,yl), (+x0,y2), (-x0,y2); 
contour eps=e2 ,hmin = h3,hmax= h6 , 

(->:0,yl) , (+xO,yl) , (+x0,y2) , f-x0,y2) ; 

pasmin = .7; pasmax = 12 00/9;nbpas = 5; 
e n d _ c o n t o u r s ; 
- - 2D mesh generator call 
m a i l l a g e 2 d ; 
- - 3D mesh generator call 
pasminh = 6.0E-02; pasmaxh = 300 .0 ; nbpash = 1,70; 
m a i l l a g e 3 d 
— capacitance matrix calculation 
capa ; 
e n d 

We can see on figure 5 and 6 the 2D mesh automatically 
generated and on figure 7 a view of the 3D mesh. 

Flo 5 : ID-Mesfv 

The capacitance matrix in femto Farads (for computational 
domain i.e. half domain) is given by 

Conductor 1 Conductor 2 Conductor 3 

(-"
 

2 
3 
T 

1 
-5 
-3 
-6 

.5348E-3 
4730E-4 
0921E-4 
7881E-4 

-5 
1 

-5 
-1 

.4730E-4 
2669E-3 
3845E-4 
8130E-4 

-3 
-5 
1 

-6 

0920E-4 
3845E-4 
5319E-3 
8472E-4 

-6 
-1 
-6 
1 

.7887E-4 
8129E-4 
8482E-4 
5401E-3 
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Concerning the computing time on apollo workstations we 
have the following results:for a 3D mesh with 6356 nodes and 31896 
tetrahedrons , the total CPU time was 5900 s on DN3000 apollo 
workstation, with 11156 nodes 57873 elements the total CPU time 
was 8596 s. 

Different numerical tests have been done on inter-crossing 
lines, with different meshes in order to extract the variation 
coefficient versus the mesh size.A diagonal coefficient is a 
decreasing function with respect to the mesh size and tends 
rapidly to a constant value.An off diagonal element is an 
encreasing function and tends able to a limits when the mesh size 
decrease. 

Remarks 

In order to takes into account in a bet ter way of infinite 
domain, several techniques are possible, first by considering 
purely fictitious medias surrounding a real one, medias with 
relative permittivity « 1 . , (in this case nothing has to be changed 
in the module LGCAPA), the computational domain is artificially 
extended by this trick,secondly with more sophisticated techniques 
as use of infinite elements [5], mapped infinite elements [6], 
ballooning techniques [7], by coupling classical finite elements 
with boundary elements techniques [8]. 
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