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SUMMARY 

Sensors convert physical or chemical mcasurands into electronic signals. 
Microsensors arc manufactured using microelectronic processing technologies. 
The goal is to develop batch-fabricated sensors interfaced with microprocessors or 
application specific integrated circuits. Device modeling is becoming an essential tool 
for microsensor design and analysis. This new field of microsensor modeling is 
reviewed in this paper. Model equations and boundary conditions are presented along 
with numerical procedures and selected results. 

INTRODUCTION 

A sensor or "entrance transducer" is a device which converts a physical or 
chemical signal into an electronic signal that can be readily processed, stored, or 
transmitted. Sensors arc required at the front end of measurement and control 
systems or robots. Microsensors or integrated sensors can be designed and 
manufactured using standard silicon integrated circuit (IC) technologies such as CMOS 
or bipolar technology with or without additional sensor-specific processing steps. The 
use of IC technology offers the advantage of integrating the sensing elements with 
support and signal conditioning circuitry on the same chip. Silicon has 
revolutionized electronics and is now altering our perceptions of sensors as well. 

Microsensors can be classified by mcasurands, i.e. input signals to be converted, 
namely magnetic, chemical, radiant, mechanical, and thermal signals. A number of 
magnetic field, optical, pressure, and temperature microsensors has been achieved in 
standard silicon IC technology by inventive device designs without requiring any 
special processing steps. Examples are integrated Hall sensors, magnetotransistors, 
photodctcctors, and transistor-based pressure and temperature sensors. Other sensors, 
notably chemical and mechanical sensors, require dedicated post-processing steps 
such as the deposition of specific films or the creation of geometric structures by 
microliihography and etching (micromachining). Examples are capacitive humidity 
sensors with water adsorbing layer, chemical sensors made selective by applying an 
enzyme layer catalyzing the reaction of one specific compound, and various 
mechanical sensors based on silicon microsiructures produced by etching, such as 
microbridges, diaphragms, and cantilever beams. 

Timely information on the rapidly growing field of microsensor research can be 
found in recent reviews [1,2], conference proceedings [3,4], special journal issues [5], 
and in the dedicated journals "Sensors and Actuators" and "Sensors and Materials". The 
wealth of approaches, methods, and tools can be classified in the four broad categories 
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of (i) silicon IC technology (standard fabrication process, but dedicated device design 
and test of sensor functions), (ii) film deposition, (Hi) micromachining, and (iv) 
device modeling. The last mentioned area of microsensor modeling is the topic of this 
paper. 

The modeling of semiconductor IC devices is a highly developed art, as is 
manifested by the many contributions to this volume. In contrast, the field of 
microsensor modeling is still in its infancy. The motivation behind IC device modeling 
— reduction of the number of costly trial-and-crror fabrication cycles and insight in 
the physical properties of the device interior not readily accessible by experiment — 
is even more compelling in the case of microsensors. The goal is to understand the 
sensor's operating principles and, in particular, how design, fabrication, and 
operating parameters determine, enhance, or limit its sensitivity with respect to the 
mcasurand under consideration. 

By design, the presence of the physical or chemical input signal is meant to 
"upset" an "ordinary" IC device as much as possible, which makes the device modeling 
task even more difficult. For example, magnetic induction disturbs the carrier 
transport by the Lorentz force; incident radiation alters the generation 
recombination balance in photodctcctors; mechanical stress can modulate the electric 
conductivity. The mcasurand o/icn appears in the form of an external field that 
reduces the symmetry of the device operation, hence making the choice of 
appropriate model equations, physical and material parameters, as well as boundary 
and interface conditions very crucial. 

Simple analytical models of microsensor operation arc useful heuristic tools for 
trial device design, but often may turn out to be correct, only under very special 
geometry and operating conditions. Numerical microsensor modeling is indispensable 
for analysing general and more complex situations. Solar cells and pholodiodes arc 
probably the best understood semiconductor sensors and the latter can often be treated 
adequately by one-dimensional numerical modeling. A variety of one and two 
dimensional numerical codes have been developed (sec [6] and [7J) that solve the 
drift-diffusion based system of equations in the presence of optical radiation. In view 
of the vector character of magnetic induction, at least two-dimensional modeling is 
usually required for magnetic sensors [8]. For these problems, we have developed 
ALBERT1NA- a package that provides numerical solutions to the system of equations 
governing carrier transport in Hall type [9] and bipolar magnetic field sensors 110,11 ]. 
As far as pressure sensors arc concerned, we arc only aware of SENSIM [12] and 
ANSYS (sec [ 13J), that can provide a full numerical analysis of the interactions of 
mechanical, thermal, and electrical effects in such devices. 

MODELING EQUATIONS 

The fundamental system of partial differential equations that describe the physical 
processes occuring in integrated sensors, are usually given in the following 
macroscopic form 

div (eE) = p 

d\\Jn-qdnldt = q(R-G) (1) 

div Jp + qdpldt = -q(R-G), 
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in the usual notation (see [14]), Although the equations arc a result of many 
approximations 114], they are nevertheless justified in view of the physical 
dimensions and operating conditions normally encountered in practical sensing 
structures. Depending on the nature of the measurand, the various quantities in 
system (1) have to be suitably modeled to account for the variety of physical effects 
(and their interactions) taking place in the device. Some of the pertinent models are 
described in what follows. 

Temperature effects 

Semiconductor devices arc sensitive to variations in temperature, whether applied 
externally or generated within the device. A variety of methods are possible for 
utilising devices and circuits in standard IC technology, as temperature transducers. A 
review of temperature transducers can be found in [15]. To allow for the effects of 
temperature, the transport relations f o r / n and J in system (1), for not too large 

temperature gradients arc [14] 

Jn = - qDn (7) [grad n-n grad (qyf/kT)] + qnDn
T(T) grad T (2) 

Jp=-qDp (T) [gradp+p grad (<?y//*7)] - qpDp
T (T) grad T, (3) 

including a component of electric current density with the temperature gradient as a 
driving force. The temperature dependent concentration diffusion constants, Dn and 

the drift mobilities, )J.n arc assumed to be related by Einstein's relations and the 

thermal diffusion constants, D can be assumed equal to D (7)/2r(sec [14]). The 

carrier concentrations n and p arc assumed to follow Maxwell-Boltzmann statistics, 

n = niecxp[(y/-<pn)/Vt) (4) 

p = niecxp[((pp-y/)/Vt], (5) 

where V; denotes the thermal voltage, n-ic the effective intrinsic concentration, and 

<pn _ denote the respective Fermi potentials. An elaborate account of the temperature 

dependence of the various terms in (1) to (3) can be found in [14,16]. The models are 
identical to those used in IC device modeling. Electrical and thermal interactions in 
the device can be accounted for by an additional heat flow equation, viz., 

div [x(7) grad T\ = pc ffTldt -H (6) 

with K(T) denoting the thermal conductivity, p the mass density and c the specific heat. 
H accounts for the various heat sources and sinks in the system. Equations (1) to (6) 
adequately describe the thermoelectric effects and in particular the Seebeck effect 
which can be exploited in thermal sensing [17]. 
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Oplieal radiation 

Physical processes in optoelectronic devices such as photodiodes and solar cells 
can be described by (1) to (3), but optical generation of carriers has to be taken into 
account. For monochromatic radiation with zero reflectance at the diode back surface 
optical generation at depth x into the device can be generally expressed as [6,7] 

oo 

G(x)= J (]-r)<pae-ax dX, (7) 
0 

where cp is the incident photon flux per unit area normal to the device, Tthc front 
surface reflection coefficient, a is the absorption coefficient, all being functions of 
the wavelength, A. For multiple reflections between front and back surfaces, the 
integrand in (7) becomes more complicated (see [7]). In avalanche photodiodes, the 
high reverse bias voltage across the depletion zone leads to e-h pair generation from 
high energy electrons and holes in the depletion region, thus requiring the inclusion 
of impact ionisation in the continuity equations. High doping effects particularly in 
solar cells result in the recombination term, R accounting for both Auger and 
Shocklcy- Read- Hall processes. The dependence of the intrinsic carrier concentration 
and carrier lifetimes, r on doping concentration arc modified accordingly [14,16]. 

Also the electric potential in the current density relations in (2) and (3), have to be 
replaced by effective potentials accounting for variations in band structure and the 
Fcrmi-Dirac statistics (see [18]), 

As for the boundary conditions, the electric potential and carrier densities at 
ohmic contacts (assumed ideal) are prescribed by the usual Dirichlct conditions [14], 

V/= Va + (kTlq) sinh"1 (N/2^) 

n = (N2/4 + «(.
2) 1 / 2 + N/2 (8) 

p = (N2l4 + n?) 1 / 2 -A72 , 

where N denotes the net ionised impurity concentration. Wc note that relations (8), 
hold for the various other sensors whose output is electrical. At the interface between 
two different media, the net electric displacement normal to the interface is assumed 
equal to the interface charge density. The current densities at insulating boundaries is 
determined by the recombination at the interface [6], fornonidcal interfaces. 

Magnetic field effect 

In the presence of a magnetic field, the action of the Lorentz force on moving 
earners manifests itself in the transport equations. Under various assumptions [ 19], 
the magnetic field dependent electric current densities can be expressed in the 
classical drift-diffusion formulation as 

KB + Vn KByB = iDnIsrad"-ngradfov/*D] (9) 

JpB - V KlSxB = - QDp I S rad P + P S rad ("7 V^7)l • (10) 
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The transport relations arc a good approximation only in the weak field limit, (fJ _ D) 
« 1, with a relative error that is of the order of Qi B) , The equations take into 
account the direct effects of temperature on the various coefficients, but they do not 
include thermoelectric and thennomagnctic effects. The Hall mobility, fj.n is assumed 

proportional to the drift mobility, /j with the constant of proportionality being the 
Hall scattering coefficient. The experimental value of this coefficient has been found 
to be significantly different from theory, particularly in the limit of ionised impurity 
scattering [20], In general, this coefficient depends on the nature of the scattering 
mechanism, the band structure, the degree of degeneracy, and on the statistics 
characterising the velocity distribution of carriers [21]. In view of the scattering 
mechanisms normally assumed in the simulations, and in weak magnetic fields, a 
value of 1.2 for the scattering coefficient for both electrons and holes [11] can be 
adopted. 

System (1) together with relations (9) and (10) are solved subject to a mixture of 
Dirichlct and homogeneous Neumann boundary conditions. At ohmic contacts 
(assumed ideal), the electrostatic potential and carrier concentrations at the contact 
arc prescribed by the usual Dirichlct boundary conditions (8). At insulating 
boundaries, the presence of a magnetic field could result in a significant Hall field at 
the boundaries. In such a case, the standard condition grad y/. n = 0 at these insulating 
boundaries may be physically invalid (n denotes the outward normal vector) and 
therefore, the procedure introduced in [ 10] is adopted. The actual boundary condition 
on i//at these boundaries is treated as unknown and to deal with the problem an 
"artificial" oxide region is introduced, which completely encloses the device domain. 
In this way, one avoids imposing artificial boundary conditions at the device/oxide 
interface which could a priori affect the results. The discontinuities in the normal 
component of electric field at the interface arc handled in the weak formulation of the 
equations. Poisson's equation is solved over the entire domain (consisting of the 
device plus oxide), with the normal component of electric field taken to be zero at the 
oxide's outer edges. The nature of this condition could, in principle, affect the solution 
in the device's active region. These effects, however, can be made minimal by an 
appropriate choice of the oxide thickness. The solutions of the continuity equations 
arc restricted to the device domain. At the semiconductor/oxide interface, the zero 
normal current condition Jn.n=J.n = 0is imposed for ideal interfaces. 

Mechanical effects 

The effect of mechanical stress in a p-n junction can be exploited in realising 
bipolar transistors whose output characteristics are a function of the applied stress 
[22,23]. Stress-induced variations in the energy band structure affect the intrinsic 
concentration which then becomes 

nia
2=nie

2cxp\aP/kr], OD 

where a is 10"5 cV/bar for a uniaxial stress in the <100> direction and P denotes the 
applied pressure (see [23]). Consequently, the majority and minority.carrier 
concentrations in the base region arc affected. The stress also induces a change in the 
carrier mobility. The change in mobility, A )J is linearly related to the stress, 
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A// = -//cr<5, (12) 

where 8= 10 bar"1 and a denotes the stress. There is also a change in the free carrier 
lifetime due to the stress induced generation-recombination centres. 

Mechanical Equations and Boundary Conditions 

The basic effects exploited by pressure sensors arc piezoelectric, piczorcsistivc, or 
capacitivc. The effects most commonly utilised by integrated Si pressure sensors arc 
piczorcsistive (A R) or capacitivc (A C) which arc inherent in a thin diaphragm. Based 
on the approximations employed in the thcrmoclastic plane-stress formulation [24], 
the equations governing stress, F and deflection, to in a diaphragm are given by: 

£ldy2 [ME (fiFldy2 - v^Fldx2)} + 2d2/dxdy [MG {^Fldxd)^) 

+ fildx2 [ME {^Fldx2 - v^F/dy2)} 

= - (1 - v) [g-ldx^Mj-lE) + ftldyHN-^E)), (13) 

£ldx2 \DX fialdx2 + D2 fieddy2)} + ifildxdy [D3 fico/dxdy] 

+ fi-ldy2 [D2 tf-eddx2 + Dx fice'dy2)] 

= q - [1/(1 - v)] [^M-jJdx2 - tP-M-jJdy2]. (14) 

In eqns. (13) and (14), E denotes the effective Young's modulus, G the effective shear 
modulus, N-j- the thermal load, My the thermal bending moment, q is Lhc effective 

loading, v denotes Poisson's ratio, F the stress function, and co the diaphragm deflection. 
D], D2, O3, and Mj arc assumed constants and arc given in [24], The boundary 
conditions for (13) arc as follows, 

^Fidx2 = Ns and ^Fldxdy = 0 fory = ± L/2, 

^Fldy2 = Ns and ^Fldxdy = 0 for x = ± L/2, (15) 

where A' is a surface traction force caused by thermal mismatch between the silicon 

substrate and packaging/mounting material and/or external forces, and L is the 
diaphragm side dimension (Fig. 1). The boundary conditions for (14) arc [24] 

co = 0 at x = ±(L/2) or y = ± (L/2), 

daldx = gMx atx = ±L/2, (16) 

dcoldy = gM at y = ± L/2, 
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where Mx and M arc bending moments and g is the edge factor (see [24]) which is 
constant. Equations (13) and (14) solved with boundary conditions (15) and (16) yield 
the stress components, CT^, a and a in the diaphram'. In the case of bridge and 
cantilever structures, the boundary conditions (15) and (16) become suitably modified. 

For piczoresisiivc pressure transducers, the fractional change of resistivity 5p as a 
result of stress cris [24], 

8Pi= I ntjOj (17) 

where i (=1,2,..,6) and; carry the notation such that xx=>l, yy=>2, zz=»3, yz=A, xz=>5, 
and xy=>6. For a diaphragm in x-y plane, employing the plane stress approximation 
(axz, a and azz assumed negligible), yields the fractional change of resistance as 

A RIR0 = n1a1 + nt at + xl6 a^, (18) 

where R is the unstressed resistance, AR denotes resistance change, a1 is the average 

normal stress parallel to the current path, at is the average transverse stress 

perpendicular to the current, path, a^ is the average shear stress and nx t ! 6 denote 

the longitudinal, transverse, and shear piezoresistive coefficients. 

For capacitivc pressure transducers, the total effective capacitance between the 
diaphragm and the reference plate is given by [24], 

C = ejs2 JJ [ 1 - a) (x,y)] dxdy + Cp (19) 

where C_ is the parasitic capacitance, s is the zero pressure separation between 

diaphragm and reference plate, and eQ is the dielectric constant in the cavity. The 

relative change of capacitance due to deflection (C -C )/C can then be evaluated with 

the zero pressure capacitance CQ being e0L /.v. 

NUMERICAL PROCEDURES 

Except in very special circumstances, none of the above systems of equations can 
be solved analytically. Consequently, a variety of numerical schemes have been 
introduced to obtain reasonably accurate solutions to the problems considered. For the 
devices wc have selected, finite clement/box type procedures arc preferable. This 
approach allows flexibility in node position and density, and case of specification of 
natural boundary conditions. Consequently, changes in device geometry and 
parameters can be easily implemented. Finite difference solvers can also be used 
[14,25], so the choice is based on individual preference and needs. 

The first - and most important - step is the generation of a suitable grid. Our 
ALBERTINA grid generator consists of a hybrid scheme which combines procedures 
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introduced in [26,27] with a simpler generator (sec Fig. 2), Roughly speaking, it works 
as follows 128]: given a simulation region, wc first decompose the domain into 
subrcgions whose area depends on the local changes and size of the physical 
parameters. Each subrcgion is then automatically decomposed into cither right angle 
or equilateral triangles (sec Figs. 2 and 3), with clement matching at the interfaces. 
Wc observe that perpendicular bisectors of the sides of such triangles must intersect 
within the triangle. It is easy for us to control the smallest angle in the right angled 
triangles thus facilitating the control of discretisation error [29,30]. Division into 
equilateral triangles requires relatively many nodes and is used in regions where 
conditions and variables arc changing rapidly along curves. Division into right angle 
triangles uses fewer nodes and is suited to regions of slow change or of change only in 
one direction. This is important in view of the large physical dimensions that sensors 
have in general. Finally, various residues and relative changes arc monitored as the 
solution procedure progresses. If such quantities arc deemed unsatisfactory at any 
nodc(s), then the solution procedure is stopped, the grid in regions adjacent io such 
places is refined and the solution procedure is then resumed. 

Wc can solve linear and nonlinear Poisson's equation, electron continuity 
equation, hole continuity equation, and the heat flow equation. Depending on the 
problem posed, an appropriate combination of the above equations is used. Wc briefly 
describe our procedure in the solution of Poisson's and the continuity equations for 
the case of magnetic field sensor simulations. Given y/n, nn, andpn, wc solve the 

nonlinear potential equation for i//j using a modified Newton method. Speed of 

convergence is improved by accelerating algorithms [31 ]. Since the magnetic field B 

docs not enter in this equation, our procedure is essentially as in [14,25]. Given y/j, n^, 

PQ, wc next discrctise 

6\v(AJn) = R(n.p), (20) 

where A is a nonsymmctric matrix whose entries depend on B [32], This is done by 
following the averaging ideas of the Scharfcttcr-Gummcl scheme [33] in discretising 
J in any clement, A cell is constructed surrounding any node by means of 

pcq^cndicular bisectors of the clement sides, and Gauss's theorem is then employed to 
integrate (20). Observe that the presence of nonsymmctric A leads to changes in the 
calculations relative to the usual procedure, Wc next proceed to calculate /?j by a 

similar procedure. Wc have found it advantageous to solve for self consistent « J , / ? J 

before returning to calculate y/̂ . The procedure continues until self consistent values 

are found for y/, n, and p . The stopping criteria used arc of the order of 30"J to 10"° 
depending on the problem considered [11], 

The above procedures arc usually started at equilibrium. Applied bias is increased 
in small steps to the desired value with y/, n, and p updated at each stage by 
extrapolation from the two previous values. As is well known, the above procedure 
works well for small /?, but difficulties arc encountered otherwise. In such cases, a 
Newtonian scheme may be applied to all variables simultaneously at the price of 
increased computational complexity. The above procedures lead to the inversion of 
numerous nonsymmctric large sparse matrices. Up to about 3000 nodes, wc have 
observed that the package SPARSPAK [34] of direct solvers performs very well. As the 
number of nodes increases, however, the storage requirements become excessive. Wc 
have developed generalised preconditioned conjugate gradient procedures to handle 
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such problems; work in this area is still in progress. 

The above discretisation ideas fail a priori for sensors which lead to fourth order 
differential equations such as those governing the mechanical behaviour of 
microstructures. For problems of this nature, a finite element scheme based on 
macrotriangles [29] is preferable. The procedure maintains the flexibility with which 
general micromcchanical structures and geometries can be handled. For a variety of 
reasons, it is desirable to have apertures (holes) distributed on structures such as 
diaphragms and bridges. Furthermore, the boundary conditions as well as any 
material inhomogenctics can be handled naturally in the weak formulation of the 
equations. Work along these lines is currently being pursued. 

Finally, we briefly describe our error checking routines. New codes are first run 
on simple problems whose answer is known analytically or on problems whose answer 
had been previously established. Current balance checks are also performed. Such 
steps are taken to remove obvious errors. For new problems, however, the key 
mathematical question is how to determine practically a suitable size for the triangles 
used in any subregion. Our grid generator attempts to choose this size so as to 
reasonably distribute the error, although we have been usually unable to obtain 
precise practical estimates. Moreover, errors may lie in reducing the physical device 
operation to a mathematical model. If such errors are large, no adjusting of triangles 
will suffice. In summary, the ultimate error check is based on comparison of the 
numerical results to the experimental results obtained for a device of similar type. 
This, we have strived to do as much as possible (see [9,11]). 

RESULTS AND DISCUSSION 

Photodiodes have the unique feature in that carrier transport analysis can be 
adequately treated in one dimension. Examples of numerical results in photodiodes 
using the one-dimensional PC-ID simulator are illustrated in Fig. 4. The simulator 
runs on IBM XT compatible computers and provides to the user, a variety of 
sophisticated physical models for both Si and GaAs photodiodes, and also allows 
provision for user input models. The electric field and carrier concentrations at 
equilibrium are illustrated in Fig. 4 for the Hamamatsu 1337 photodiode using the 
default parameters in PC-ID. The limitations of PC-ID, particularly in simulating the 
short circuit photocurrent in high accuracy photodiodes (such as those used for self 
calibration) arc discussed in [7], Current efforts in silicon photodiode modeling aim at 
high accuracy prediction of the spectral quantum efficiency for the purpose of 
absolute calibration in radiometry. 

Selected numerical results of magnetic field sensor simulations using ALBERTINA 
arc illustrated for unipolar as well as bipolar devices in Figs. 5 to 10. Distributions of 
carrier transport were computed for a variety of Hall devices under various 
configurations of discontinuous magnetic induction (Fig. 5). In the case of the Hall 
cross with a longitudinal strip domain, wc observe strips of Hall fields with current 
flowing parallel to the inversion boundaries, indicating that the distributions 
effectively resemble the "Hall effect" analytical model. In the other limiting case of 
the transverse strip domain, wc observe no Hall fields but the current lines are skewed 
by the local Hall angle. In this case, the distributions obey the "carrier deflection" 
intuitive model. In the general case where the magnetic field is inhomogeneous in 
both directions, a mixture of both Hall effect and carrier deflection are involved in a 
complex way on both sides of the inversion boundary. The analysis of such 
configurations in terms of simple analytical models could become very complicated, if 
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not impossible. A comparison of experimental and numerical ouput responses is 
illustrated in Fig. 6, for both bubble and strip domain configurations. As we can sec 
from (he figure, the experimental results support the validity of our analysis. 

The simulation domain for a bipolar magnetotransistor is shown in Fig. 7 with Fig. 
8 illustrating the actual device structure which was fabricated using bipolar 
technology. The oxide that surrounds the base region (Fig. 7) has been introduced to 
deal with the problem of boundary conditions discussed in the previous section. To 
illustrate the effects of magnetic field near the junction vicinity, cquipotcntial lines 
for the region around the emitter of the device arc shown in Fig. 9. The dashed lines 
indicate the interface between the semiconductor and the oxide at the surface and the 
bold lines denote the emitter electrode. The device is operated at Vnr = 0.85 V with a 

magnetic field of 2 Tcsla parallel to the chip surface. The current through the device 
is 0.6 m A. The cquipotcntial lines appear to be symmetric around the emitter-base 
junction indicating that there arc no significant Hall fields in that vicinity. The 
distribution of flow lines for minority carriers (electrons) is illustrated in Fig. 10. In 
contrast to the distribution of potential, the effect of the magnetic field clearly 
manifests itself in the distribution of current density. There is no indication of any 
asymmetry in the injected emitter current at the metallurgical emitter-base junction. 
The numerical results discussed above yield Hall voltages in the order of (iV at the 
emitter-base junction vicinity. This is too small in magnitude to substantiate the 
validity of the emitter injection modulation model (see f 11]). These predictions 
gathered from simulations arc supported by experimental data obtained from in situ 
Hall probe measurements [11]. A systematic comparison of simulations performed for 
various device structures lead us to conclude that the dominant operating principle in 
magnctotransistors with linear response is carrier deflection, while possible 
nonlincaritics can be attributed to magnctoconccntration effects. 

In mechanical sensor design and development, numerical analysis serves as a 
valuable tool, reducing the number of redesign cycles [13]. In the design of a silicon 
cantilever accclcrometcr (singly fixed beam), the general purpose finite clement code 
ANSYS has been extensively used to predict stress patterns on the beam, the 
sensitivity, the fundamental as well as higher order resonant modes, temperature 
coefficient, and ovcrrangc characteristics [13]. Knowledge of the stress distribution 
on the beam aids resistor placement. Results of modal analysis arc illustrated in Fig. 
11, where the fundamental bending mode is at a resonant frequency of 839 Hz and a 
second (torsional) resonant mode at 68,575 Hz. Hence, for a given measurement 
bandwidth, one determines a priori whether the higher order modes would present 
serious problems. 
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diaphragm 

Fig. 1. Cross-sectional view of a pressure transducer 

Fig. 2 Triangular mesh for an emitter base junction of a magnctotransistor, 
generated using Delauney triangulation at junction sidewalls and regular 
grid triangulation everywhere else [8]. 
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Fig. 3 Delaunay triangulation for a microbridgc with apertures 
{Courtesy ofChau [28]). 
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Fig. 4 The electric field and carrier concentrations at equilibrium as a function of 
depth. The nominal front region parameters used are characteristic of the 
Hamamatsu 1337 photodiode {Courtesy ofGeist [7]). 
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Fig. 5 Equipotential and current lines for a Hall cross with longitudinal strip 
domain, a split-electrode Hall device with transverse strip domain, and a 
conventional Hall device with bubble domain [9]. 
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Fig. 6 Comparison of experimental and numerical results of output response for the 
bubble and strip domain configurations. The bubble distribution used in 
simulations is denoted by "a" and the measured bubble distribution is denoted 
by curve "b" [9]. 
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Cross-sectional view of dual-collector magnctotransistor fabricated in bipolar 
technology [11]. 



577 

Fig. 9 Equipotential lines the emitter vicinity for VBE = 0.85 V and B = 2 T [11]. 

Fig. 10 Minority carrier (electron) flow lines in the vicinity of the emitter for the 
same operating conditions as in Fig. 9 [11]. 

Fig. 11 The fundamental (bending) mode at 839 Hz and second (torsional) mode at 
68,575 Hz, for a silicon cantilever accelerometer (Courtesy ofBarth et al. [13]). 


