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SUMMARY 

In many practical situations of numerical semiconduc­
tor device simulation, especially in transient switching 
processes, a realistic analysis should take into account 
the interaction between the analysed device and the environ­
ment it is embedded in. The contact voltages can then 
no longer be considered, as is usually done, as "a priori" 
known boundary conditions for the basic partial differen­
tial equations (p.d.e.) describing the transport phenomena. 
They must rather be adjusted to satisfy the N (for an 
(N+1)-terminal device) nonlinear equations of the external 
circuit. As the resolution algorithm influences directly 
the number of expensive numerical solutions of the p.d.e., 
it must be chosen very carefully. 

The iterative algorithm proposed in this paper is 
the sequential (N+1)-point secant method which essentially 
replaces the real current versus bias dependency by a 
linear relationship using the N+1 most recent approxima­
tions of the applied voltages and the corresponding cur­
rents. Each iteration requires only one resolution of 
the p.d.e., whereas, for example, a discrete Newton itera­
tion costs N+1 times more. The method is able to handle 
efficiently resistive, reactive and nonlinear -analytically 
or even numerically modelled- components connected to 
the device under study. It is suitable for steady state 
and transient simulations in two or three space dimensions. 
It can be implemented without too much difficulty into 
existing device simulators, regardless of the particular 
numerical method used to solve the p.d.e. The asymptotic 
convergence rate of the secant method is superlinear and 
remains reasonably high for moderate values of N but, 
unfortunately, no theoretical guarantee of convergence 
can be given. Practical experience showed, however, that 
the method gives good results and the required precision 
was usually reached in 3 to 6 iterations. 

The simulations of the turn-off of a gate controlled 
switch illustrates the use of the method. The impedances 
in gate and anode circuits definitely influence the obser­
ved current and voltage waveforms and may not be neglected. 
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1. INTRODUCTION 

Since the first paper on numerical simulation of 
semiconductors devices, in 1964 [1], considerable effort 
has been and is being devoted to the improvement of exis­
ting methods or to the development of new, more powerful 
numerical techniques. Numerous publications witness of 
the progress realized in this area. From simplified ID 
steady state problems, the application field has been 
widened to include 2D and even 3D, static and transient 
calculations, taking into account most of the relevant 
physical mechanisms through sophisticated physical models 
[e.g. 2-3]. 

Much less attention has, however, so far been paid 
to the problem of the interaction between the simulated 
device and the external circuit it is connected to. The 
basic partial differential equations (p.d.e.) describing 
the transport physics are commonly considered as a boundary 
value problem, where, at the metallic contacts, the carrier 
densities are fixed and the electric potential takes "a 
priori" known values, according to the prescribed bias 
conditions. The numerical resolution of the p.d.e. yields 
the distributions of internal variables such as free car­
rier concentrations, potential and current densities. 
After integration of the carrier flux, the terminal cur­
rents are obtained for given voltages. This corresponds 
to devices operating under ideal voltage sources and is 
often sufficient to yield useful simulation results. There 
are, however, many situations, where the interaction with 
a nonidcal external circuit becomes essential for the 
device operation and can no longer be neglected. This 
is true for many switching processes, such as the forced 
turn-off of gate controlled power rectifiers. In the begin­
ning of the switching process, the load impedance acts 
as a current source and keeps the anode current constant 
during the storage period. Afterwards, when the device 
impedance rises, the anode voltage increases sharply 
during the fall period of the anode current. Hence, at 
any moment, anode current and bias result from a balance 
between the gate controlled switch and the anode load 
circuit. The bias conditions are no longer "a prion" 
known, but must be adjusted to satisfy the nonlinear equa­
tions of the external circuit. The resolution algorithm 
for this apparently simple problem must be chosen very 
carefully, because it will require more or less, expensive 
numerical solutions of the p.d.e. 

Already in 1977, Turgeon and Navon [4] presented 
simulation results of bipolar transistor switching with 
a reactive load, but little information was given about 
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the underlying algorithm. The approach developped by Mock 
[5-6] is attractive because it does not require any ite­
rations for the circuit equations, but it is strongly 
related to the specific way the p.d.e. are solved. Recent­
ly, Grossmann and Hargrove [7] described a method where 
the circuit equations are inserted directly into the dis-
cretized p.d.e. and solved together with them. Once again, 
no additional iterative loop is necessary for the circuit 
equations, but a possible drawback is that the contact 
currents are evaluated by flux integration through a sur­
face very close to the contact and hence laying in a heavy-
ly doped neutral region. In such regions, it is difficult 
to calculate accurately the current densities and, conse­
quently, the terminal currents [8], in spite of highly 
accurate carrier densities and electric potential. Tomizawa 
et al. [9] used the discrete Netwon's method to solve 
the circuit equations iteratively. This approach will 
be considered more in detail in section 3, because it 
has many similarities with our method which is based upon 
the sequential (N+1> - point algorithm. It allows to 
handle linear -static or dynamic- or nonlinear loads, 
described either analytically or even numerically. In 
the following presentation, only the former situation is 
considered, but the same reasoning applies to several 
interconnected, numerically modelled semiconductor devices. 
In that case, each device is treated separately within 
every iteration cycle. 

In the following section 2, the problem to be solved 
is stated in a fairly general way. The sequential (N+1)-
point secant method is described in section 3. It is com­
pared to the related discrete Newton's method and basic 
theoretical convergence results are highlighted. The prac­
tical implementation of the method into an existing device 
simulation program is considered in section 4. The simula­
tion of the turn-off of a gate controlled switch , presen­
ted in section 5, illustrates the use of the method for 
resistive circuit conditions and gives insight into the 
device internal phenomena during the switching. Section 
6 concludes the present study. 

2. STATEMENT OF THE PROBLEM 

Let us consider a semiconductor device with N+1 
metallic contacts, where N usually ranges from 1 to 3. 
One contact is grounded without loss of generality and 
the others are numbered from 1 to N. Figure 1 is a sketch 
of the analysed system composed of a semiconductor device 
and the external circuit. 
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For the semiconductor device, the current vs. 
relationship can formally be written as : 

I = f(V) 

voltage 

(1) 

where I [I. >re I = U r . . IN)
fc, V = [V r-. V ^ and f = [f r-. 

f ] . Equation (1) must, however, not be taken as an expli­
citly given relationship. It rather is a symbolic represen­
tation of the complex sequence of operations necessary 
for the numerical simulation of an electronic component. 
The major part is the numerical resolution of the basic 
p.d.e., i.e. Poisson's equation and the carrier conserva­
tion laws, for given bias conditions V. The specific method 
used to solve this boundary value problem (by finite ele­
ments or finite differences or any other approach) is 
not relevant at the present time. Once the internal distri­
butions of the carrier densities and the potential are 
known, the current densities can be calculated. Integration 
of the current flow through surfaces separating the con­
tacts, yields then the corresponding terminal currents. 

Equation (1) still holds for transient calculations, 
but it has to be interpreted as a local relationship in 
time, assuming that partial time derivatives in the basic 
p.d.e. are expressed by discrete formulas and that the 
values of the dependent variables are known for all pre­
vious time instants. 

The external circuit must satisfy a similar relation­
ship : 
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I = -£<Y) (2) 

Normally, the external circuit is very simple, because 
the interest is focused upon the semiconductor device 
and the physical phenomena occuring within it. For ins­
tance, with resistive loads, we have : 

g,(V) = g,(V,) = 
1 — i i 

E.)/R. i = 1, .N (3) 

where R. and E. are respectively, the load resistance 
and the voltage source connected to the ith contact. The 
external circuit might, however, also be more complicated 
and contain dynamic or nonlinear elements described by 
analytical or even numerical models. 

The question is now to find the bias conditions 
V such that the currents leaving the external circuit 
equal the currents entering the semiconductor : 

f_(v) + 2(V) = 0 :4> 

This apparently simple nonlinear problem requires a careful 
selection of the resolution algorithm in accordance with 
special features. The number of unknowns N is very small, 
but the function evaluation f_+g_ is very expensive. Further­
more, no explicit expressions of the derivatives can be 
given, but they can be estimated through discrete approxi­
mations. Consequently, the resolution method should conver­
ge very quickly, and the number of evaluations of the 
function (and the derivatives) per iteration should be 
as small as possible. 

3. THE SEQUENTIAL (N+1)-POINT SECANT METHOD 

To solve equation (4), one might think of Newton's 
iterative method : 

d = -(J, + J ) 
=f =g 

V = V + d 
—new — — 

•1 
(f(V) + g_(V) 

J + J 

(5) 

is the sum of the where the Jacobian matrix J 
derivatives of f_ and £ w.r.t. the components of V. The 
latter are normally easily obtained, but no explicit formu­
las can be given for the former. Therefore, Jf must be 
evaluated by other means. For instance, each component 
of V can be increased individually by a small amount and 
the corresponding function values f_ are used to approximate 
the derivatives by difference formulas. This discretized 



6 

Newton iteration has been successfully used by Tomizawa 
et al. [9], but it will have, in general, only a linear 
rate of convergence [10, P.186] and requires N+1 func­
tion evaluations per iteration_ 

Another approach is given by the general secant 
method [10, p.189 ff.] whi c h replaces the Jacobian matrix 
by a secant matrix obtained i n t h e following way. The 
exact current vs. voltage 3 e p e n d e n c y -± = fjy) is replaced 
by a linear relationship u s i n g the function values at 
N+1 different points. Obviov4sly; s t i l l N + 1 function evalua­
tions are, in general, nec^ s s a r y r b u t r i f the points are 
properly selected, a secos-^ order convergence rate can 
be reached. 

A very interesting s p e c i a l c a s e i s t h e sequential 
(N+1)-point method [10, p.^ge], where the available func­
tion values at the N+1 m o s t reCent approximations of V 
are used to set up the se^g^ matrix. Only one function 
evaluation is sufficient t 0 f i n d t h e impr0ved approxi­
mation of V and hence to finish off the iteration. As 
the method has also a s u & e r l i n e a r convergence rate, it 
appears to be particularly w e l l suited for the present 
application. Although the c 0 n v e r g e n c e r a t e decreases with 
N, it remains reasonably high £ o r t h e v a ] _ u e s Qf N of practi­
cal interest : it is 1.62, 1 - 4 7 a n d 1 - 3 8 f o r N = 1# 2 

and 3 respectively [10, p.373]. Unfortunately, there is 
no theoretical guarantee of l o c a i convergence [10, p.379], 
but our experience showed t^ a t the method gives good re­
sults. A special problem is Q u e t o t h e f a c t t n a t t h e secant 
matrix becomes singular, if t h e N + 1 l a s t approximations 
of V are not in general pQsition in R , i.e. if the N 
vectors issued from one 05 t h e s e points to the others 
are linearly dependent. Th^ s problem is however rarely 
encountered and can easily b e dealt with by keeping the 
old secant matrix until the points are again in general 
position. The algorithm Regenerates hence temporarily 
into a parallel chord method. 

4. PRACTICAL IMPLEMENTATION 

The procedure describe i n t n e previous section 
can be implemented into listing semiconductor device 
simulators without too m u c h difficulty, independently 
of the particular numerical method USed to solve the p.d.e. 
The method is suitable for steady state and transient 
calculations in two or three s p a Ce dimensions, regardless 
of the internal resolution al9orithm 

We have introduced the m e t h o d i n t o our 2D simulation 
program based upon a general^ z e d E i n i t e difference discre-



7 

tization scheme which handles combined triangular and 
rectangular grids [11]. The original code has been extended 
to include the time discretization, using a first order 
implicit predictor-corrector scheme [12]. The time step 
is adjusted automatically to achieve a constant prescribed 
local truncation error. The discrete equations are solved 
by a coupled resolution approach, based upon a full Newton 
linearization. The system matrix is assembled efficiently 
by a node by node technique which avoids multiple evalua­
tion of the same quantities [11-12]. The resolution of 
the linear system is carried out using a successive line 
overrelaxation (SLOR) method which has been adapted to 
account for the particular matrix structure arising from 
irregular finite element like meshes. The line length 
is variable and the nonzero elemental 3x3 blocks are irregu-
larily distributed outside of the three main diagonals. 
These features can be handled without to much added comp­
lexity, and the SLOR method is economic in both memory 
requirements and CPU time. 

If the secant method is used for the circuit equa­
tions, an additional outer iteration loop for the bias 
conditions is introduced. At the start of the simulation, 
the secant matrix is not yet defined, because only one 
function value is available. The matrix is initialized 
using the discrete Newton's method. The first iteration 
needs hence N+1 function evaluations. This matrix is then 
kept unchanged for the following N-1 iterations, until 
N+1 function values are available. From then on, the secant 
matrix is updated at every iteration provided the resulting 
matrix is nonsingular, as explained in section 3. 

The iteration loop is continued until convergence 
is reached, typically within 6 to 10 iterations for steady 
state calculations, depending on the accuracy of the ini­
tial guess. In the transient case, the required number 
of iterations ranges from 3 to 6, the former value corres­
ponds to a smaller time step. It is not necessary to re-ini­
tialize the secant matrix when a new time step is started. 
The last matrix of the previous time step is simply taken 
over to the next one. 

5. APPLICATION : THE TURN-OFF OF A GATE CONTROLLED SWITCH 
(GCS) 

The forced switching-off of a gate controlled silicon 
rectifier is a typical application, where the interaction 
between the device and the load circuit is essential for 
the device operation. The considered structure of the 
gate controlled switch (GCS) is sketched in fig.2a. The 
doping profile along the x-axis is given in fig.2b, for 
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the region below the cathode (y ^ 0) and below the gate 
(y $• 30 urn). The physical models that have been used to 
complete the basic current conservation laws and Poisson's 
equation are those described by Engl and Dirks [13]. The 
expressions of the carrier mobilities account for impurity 
scattering, carrier-carrier scattering and carrier velocity 
saturation at high electric fields. Auger and Shockley-Read-
Hall recombination, the latter with impurity dependent 
lifetimes [13] are included. 

Pig. 3 represents the current wave forms during the 
gate turn-off with the indicated resistive circuit. The 
simulation starts from the on-state (va„

 = 3V) without 
gate current. At t = 0, the gate source voltage changes 
abruptly from the open-circuit value 1.08V to -10V. The 
storage period with an (almost) constant anode current 
lasts 0.8 us. It is followed by the fall time corresponding 
to a rapidly decreasing anode current, from 0.8 to 1.7 
us. Afterwards, once the cathode current has vanished, 
begins the tail period with slowly decaying anode and 
gate currents . 

Typical convergence behaviour of the sequential 
secant method is represented in fig.4 where the residuals 
of both anode and gate circuit equations are plotted against 
the number of iterations, for two different time steps. 
The first lies in the early storage period (0.04 us) 

r. = E, - R.I. - V.„ 
I A A A AK 

0 t = 0.04 us 

. t = 1.60 us 

0 1 2 3 4 5 6 
Iteration 

Fig.4 : Typical convergence behaviour of the secant method 



and the second is in the fall period at 1.6 us. Residuals 
smaller than 10 V are usually reached in less than 5 
iterations. An exception is the first time step, which 
in the present case required 11 iterations, mainly because 
the external gate voltage is changed abruptly. 

The sudden change of gate bias is also responsable 
for the somewhat unusual negative peak of gate (and catho­
de) current, immediately after t = 0 (fig. 3). It corres­
ponds to the fast reverse recovery of the part of the 
cathode junction which is closest to the gate and which 
becomes suddenly reverse biased. This phenomenon is not 
observed if the gate source voltage changes as a slower 
ramp [14]. From then on, the gate current remains almost 
constant until the tail period. The storage time, in the 
present example, results from two contributions of compara­
ble importance. The conducting area in the P-base is redu­
ced by the so-called plasma-pinching mechanism (for about 
0.5 us) which is followed by the desaturation of the remai­
ning active part of the central junction (0.3 us). These 
considerations are illustrated in fig.5 showing the elec­
tric potential distribution and current lines at diffe­
rent time instants. Hence, both mechanisms must be consi­
dered for an accurate evaluation of the storage time, 
though their relative importance may vary with the device 
parameters. After 0.5 us, only a narrow channel near the 
device center is still conducting carriers through the 
P-base, and 80% of the anode current flow through about 
30 urn. But even within this area, the current density 
is not uniform and increases towards the device center. 
The maximum value at y = -200 ym of 12,000 A/cm2 is reached 
at t = 0.8 us, i.e. in the beginning of the fall period. 
This agrees with other results for the case that a high 
current is turned off [14]. in the present example, the 
anode current waveform during the fall time is, however, 
different and shows a sequence of fast (around 0.8 us), 
more slow (from 1 to 1.2 us) and, again, fast decrease. 
Similar behaviour has been observed on experimental devi­
ces, but a satisfactory explanation has not yet been found. 
At the end of the fall time, the rest of the cathode junc­
tion becomes reverse biased, and the cathode current is 
reversed for a short time, while the junction recovers, 
and drops then to zero. The gate current changes by the 
same amount and becomes equal to the anode current. The 
GCS behaves now like a P-N-P transistor in the active 
operation mode which has its base in high injection. 
The current decays at the rate the excess charge is removed 
from the N-base. The time constant of the tail period 
depends mainly on the high-level lifetime in the N-base. 
The current spreads out over the whole width of the N-base 
and, except for the highly doped part of the P-base, the 
device behaviour becomes essentially one-dimensional. 
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The sequential (N+1)-point secant method has been 
presented as an attractive approach to handle the inter­
action between a numerically modelled semiconductor device 
and the external circuit it is connected to. In many situa­
tions, especially in transient switching processes, this 
interaction becomes essential for the device operation 
and may not be neglected. The turn-off of a gate controlled 
switch is a typical example of considerable practical 
interest. A two-dimensional simulation of the gate turn-off 
has illustrated the proposed algorithm which showed a 
good convergence behaviour. Though only resistive circuit 
conditions were considered in practice, the method is 
fundamentally more general. It is able to handle also 
linear dynamic or nonlinear elements in the external cir­
cuit. Even several connected numerically modelled semi­
conductor devices may be considered and they will be trea­
ted separately by the simulation program. 
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