Electro-Thermal Transport in 2D Materials, Devices, and Applications

Eric Pop*

Electrical Engineering, Applied Physics, Materials Science & Engineering, SLAC Stanford University, Stanford, CA 94305, U.S.A.

*e-mail: <u>epop@stanford.edu</u>

ABSTRACT

This talk will describe our group's recent work on two-dimensional (2D) materials and devices, with focus on electron and phonon transport. I will also describe some of their 'mainstream' as well as unconventional applications, which take advantage of the unique properties of 2D materials, including their anisotropy, band gap, and ultrathin nature.

ELECTRONIC TRANSPORT & APPLICATIONS

From the point of view of electronic properties, 2D semiconductors have good mobility in ultrathin, sub-1 nm (i.e. monolayer) films. This indicates they could be used in applications where their ultrathin nature provides distinct advantages, such as flexible electronics [1], light-weight solar cells [2], or nanoscale transistors [3]. They may not be useful where conventional materials work well, or where their integration cost cannot be justified.

In the first part of this talk, I will focus on 2D materials for three-dimensional (3D) heterogeneous integration of electronics, which has major advantages for energy-efficient computing [4]. Here, 2D semiconductors (e.g. MoS₂, WSe₂) could be used as monolayer transistors with low leakage, used to access high-density memory [5], leveraging advances in topological interconnects [6], themselves based on ultrathin semimetallic NbP.

Recent efforts from our group [7-10] and others [11] have demonstrated well-behaved monolayer transistors which can rival conventional semiconductors, and we found the 2D performance can be further enhanced by strain [10,12]. Because experimental devices have defects and imperfections, we have also used simulations to understand quantum capacitance [8] and high-field transport in 2D semiconductors including strain and self-heating [13].

THERMAL TRANSPORT & APPLICATIONS

The thermal properties of 2D materials are of interest due to their anisotropic and tunable thermal conductivity. We have studied this behavior as part of transistors [14,15] and memory [5,16], where self-

heating directly affects device operation and reliability. For instance, the electron saturation velocity in MoS₂ transistors is approximately doubled when self-heating is removed [13,17].

For monolayer 2D materials, molecular dynamics (MD) simulations suggest that their thermal conductivity on a substrate is always lower than in suspended films [18,19]. For multilayer 2D materials, we uncovered very long cross-plane phonon mean free paths, ~200 nm at room temperature in MoS₂ [20]. We have also layered heterogeneous 2D monolayers, achieving an effective cross-plane thermal conductivity ~3x lower than air [21]. A similar concept can be used with layered superlattices in phase change memory, enabling ultralow power operation [5]. Finally, I will also describe some applications of 2D materials as thermal switches [22] and heat spreaders in integrated circuits [23].

Combined, these studies reveal fundamental limits and some applications of 2D materials, which take advantage of their unique properties.

ACKNOWLEDGMENT

I would like to acknowledge the work of the entire Pop Lab (https://poplab.stanford.edu), as well as support from the SRC, NSF, DOE, the Stanford SystemX Alliance, Intel, TSMC, and Samsung.

REFERENCES

[1] A. Daus et al., Nat. Elec. 4, 495 (2021). [2] K.N. Nazif, et al., Comm. Phys. 6, 367 (2023). [3] C. English et al., IEDM (2016). [4] M. Aly et al., Computer 48, 24 (2015). [5] X. Wu et al. Nat. Comm. 15, 13 (2024). [6] A.I. Khan et al. Science 387, 62 (2025). [7] C. McClellan et al. ACS Nano 15, 1587 (2021). [8] R. Bennett & E. Pop, Nano Lett. 23, 1666 (2023). [9] J.-S. Ko et al., IEEE TED 72, 1514 (2025). [10] I. Datye et al., Nano Lett. 22, 8052 (2022). [11] S. Das et al., Nat. Elec. 4, 786 (2021). [12] M. Jaikissoon et al., Nat. Elec. 7, 885 (2024). [13] M. Wang & E. Pop, in review (2025). [14] E. Yalon et al., Nano Lett. 17, 3429 (2017). [15] S. Islam et al., IEEE EDL 34, 166 (2013). [16] H. Su et al., J. Appl. Phys. 136, 013901 (2024). [17] K. Smithe et al., Nano Lett. 18, 4516 (2018). [18] A. Gabourie et al., 2D Mater. 8, 011001 (2021). [19] A. Gabourie et al., J. Appl. Phys. 131, 195103 (2022). [20] A. Sood et al., Nano Lett. 19, 2434 (2019). [21] S. Vaziri et al., Science Adv. 5, eaax1325 (2019). [22] M. Chen et al., 2D Mater. 8, 035055 (2021). [23] C. Koroglu & E. Pop, IEEE EDL 44, 496 (2023).