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INTRODUCTION

Ab-initio modelling techniques provide ways to
estimate the contact resistance of metal-2D contacts,
and are important tools to understand and design
these structures. However, due to the complicated
nature of metal - 2D semiconductor contacts, the
task of obtaining accurate, physically sound results
that are consistent with experiment is daunting.

In this work, we investigate the validity of a
widely used method for the calculation of contact
resistance. Using our in-house quantum transport
solver [1], [2], we compare the calculation of
the transmission coefficient and contact resistance
through a metal-2D contact using an analytical in-
tegration [2] and trapezoidal integration commonly
used in ab-initio modelling approaches [3], [4]. It is
necessary to carefully choose the integration method
for the transmission coefficient [5].

CALCULATION OF CONTACT RESISTANCE

Figure 1a shows the structure of the Au-MoS2

contact we simulate, with the Au (ϕAu = 5.2 eV)
in blue and the MoS2 (χMoS2

= 4.2 eV) in red.
Figures 1b and 1c show the Hartree potential and
free charge density, respectively, obtained by self-
consistently solving the Poisson and Schrödinger
equations [1].

Figure 2 shows the band structures of the Au and
MoS2 at the left and right edges of the simulation
domain, where semi-infinite leads provide electron
baths from which electrons are injected in the
simulated structure. We describe the materials using
a continuum effective mass model. Therefore, the
bandstructures are those of free electrons with an
effective mass m∗ (m∗ = 1 in this work).

We calculate the conductance from the transmis-

sion coefficient using
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Here, ∂fFD(E)

∂E is the derivative of the Fermi-Dirac
distribution, and T (E, ky) is the transmission co-
efficient in the transport (x) direction at a certain
energy E sampled at a value of ky of the wave
vector in the transverse direction.

Figure 3 shows the comparison between the
analytical and trapezoidal integration methods for
the calculation of T (E) =

R
dkyT (E, ky). Using

our effective mass model, we are able to perform
a transformation where we obtain T (E) analyti-
cally [2]. Crucially, Fig. 3 shows that a small Nky

can result in over- as well as underestimation of the
transmission coefficient.

CONCLUSION

Figure 4 shows the convergence of the contact
resistance w.r.t. the number of samples taken in the
transverse (ky) direction. We see that the trapezoidal
integration is able to capture the behavior of the
contact well when Nky

is well-chosen.
Figure 5 shows that the relative error in the

calculated contact resistance is strongly dependent
on the choice of Nky

. The choices for Nky
that

do not include the conduction band minimum are
particularly erroneous at insufficiently large Nky

.
We conclude that even in advanced models, e.g.
DFT+NEGF, it is important to carefully choose Nky

.
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Fig. 1: (a) Schematic representation of our metal-2D
semiconductor contact. Self-consistently calculated
Hartree potential (b) and free charge density (c).
The calculated Schottky barrier is 0.57 eV. We add
a sheet doping of ρsheet = 5× 1012 cm−2.

Fig. 2: Bandstructure of the materials at the left
and right edges of the simulation domain and in
the corresponding semi-infinite leads. The metal
and semiconductor are at the left and right sides,
respectively.

Fig. 3: The transmission coefficient, multiplied by
the derivative of the Fermi-Dirac distribution, cal-
culated using trapezoidal and analytical integration
of T (E) =

R
dkyT (E, ky) for Nky

= 3, Nky
= 6

and Nky
= 9.

Fig. 4: Convergence of the contact resistance calcu-
lated using trapezoidal integration of the transmis-
sion coefficient, with varying number of samples
in the transverse (ky) direction. The analytically
calculated value is shown as the dashed red line.

Fig. 5: Convergence of the relative error in the
contact resistance between the trapezoidal and an-
alytical integration methods for the transmission
coefficient.
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