Self-consistent k.p band structure in doped coreshell nanowires with type-I, type-II and brokengap radial heterointerfaces.

A. Vezzosi¹, A. Bertoni², and G. Goldoni^{1, 2} ¹ Università di Modena e Reggio Emilia, via Campi, 213/A, Modena, Italy ² Istituto Nanoscienze - CNR, Modena, Italy e-mail: andrea.bertoni@nano.cnr.it

INTRODUCTION

Tailoring spin-orbit coupling and valence-band mixing in nano-fabricated semiconductors is critical to engineer scalable spintronic devices. Here, we present our numerical investigations on the electronic band structure of modulation-doped GaAs/AlGaAs and InAs/GaSb core-shell nanowires (CSNW) with both *n*- and *p*-type doping. Calculations are performed by a recently developed self-consistent finite-element library able to treat a broad class of CSNWs which will be described.

MODEL AND METHOD

We adopt an 8-band Burt-Foreman k·p Hamiltonian approach which describes coupled conduction and valence bands in heterostructured nanowires of arbitrary radial composition, growth directions, and doping. Coulomb interactions with the electron/hole gas are taken into account within a mean-field self-consistent approach. We map the ensuing multi-band envelope function and Poisson equations to optimized, nonuniform real-space (fig. 1). Self-consistent charge-density, grids single-particle subbands, density of states, and absorption spectra are obtained at different doping regimes[1]. We extend previous investigations to descriptions realistic of modulation-doped samples. The use of a flexible numerical approach, with nonuniform grids, proved to be critical to treat doping levels at comparable numerical loads.

RESULTS

For *n*-doped Gas/AlGaAs samples, a large restructuring of the electron gas for increasing doping takes place and results in the formation of quasi-1D electron channels at the core-shell interface (fig. 2). For *p*-doped samples, strong heavy-hole/light-hole coupling of valence states

leads to non-parabolic dispersions with mass inversion (fig. 3), similar to planar structures, which persist at large doping, giving rise to both heavy-hole and light-hole gaps. In addition, the hole gas forms an almost isotropic, ringlike cloud for a large range of doping. We will also show that signatures of the evolution of the band structure can be singled out in the anisotropy of linearly polarized optical absorption[1].

In InAs/GaSb CSNWs a type-II/broken gap alignment transition takes place, which changes the topological nature of the gap, depending on structural parameters[2,3], making this system a building block for topological quantum gates and for non-abelian physics. Based on our library, we propose a numerical protocol to calculate the selfconsistent charge in broken-gap materials, where band alignment induces charge transfer also at charge neutrality. Therefore, we are able to expose the role of the self-consistency field in assessing the metallic or semiconductor character of the nanostructure (fig. 3) and driving the topological transition both by structural parameters and external gates.

ACKNOWLEDGMENT

AB acknowledges partial financial support from the EU project IQubits (Call No. H2020-FETOPEN-2018-2019-2020-01, Project ID 829005). The authors acknowledge CINECA for HPC computing resources.

REFERENCES

- A. Vezzosi, A. Bertoni, G. Goldoni, *Band structure of nand p-doped core-shell nanowires*, Phys. Rev. B 105, 245303 (2022).
- [2] Luo, N., et al. Band-inverted gaps in InAs/GaSb and GaSb/InAs core-shell nanowires, Sci Rep 6, 38698 (2016).
- [3] M. Rocci et al., *Tunable Esaki Effect in Catalyst-Free InAs/GaSb Core–Shell Nanowires*, Nano Lett. 16, 7950, (2016).

Fig. 1. (a) Cross-section of the GaAs/AlGaAs CSNW illustrating the different materials and the doped region. (b) Example of an optimized FEM grid used to solve the k.p equation of motion with superimposed self-consistent charge density (in grey scale arbitrary units). The grid is limited to the core and first shell, as indicated by the dashed lines.

Fig. 2. Electron (left), light-hole (center) and heavy-hole (right) density for the ground of a heavily doped GaAs/AlGaAs sample, with doping density 1.9x10¹⁸ cm⁻³.

Fig. 3. Left: valence bandstructure of a GaAs/AlGaAs sample with doping density 1.73×10^{18} cm⁻³ showing mass inversion. Right: Bandstructure of a InAs/GaSb sample showing band hybridization and the opening of an energy gap induced by the spin-orbit coupling and the self-consistent field. The color respectively indicates the weight of the heavy/light hole or electron/hole character of the states.