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Amorphous selenium (a-Se) is emerging as a vi-
able solid-state imager with avalanche gain for low-
light and low-dose radiation detection applications.
[1] At high electric fields, hole transport in a-Se
can be shifted entirely from localized to extended
states, resulting in deterministic and non-Markovian
impact ionization avalanche (excees noise factor,
ENF ∼ 1) ∼Fig. 1. To understand this behavior, a
comprehensive study of the history dependent and
non-Markovian nature of the hot hole transport in
a-Se was performed using a Monte Carlo (MC)
random walk of single hole free flights, interrupted
by instantaneous phonon, disorder, hole-dipole, and
impact-ionization scattering processes.

Our multi-scale simulation approach combines
molecular dynamics (MD) simulations with den-
sity functional theory (DFT) and MC simulations
(using a non-parabolic band model). The energy
and phonon band structure ∼Fig. 2, along with
the valence band density of states (VB-DOS), for
trigonal selenium (t-Se), was calculated using den-
sity functional theory (DFT). Fig. 3 shows the DFT
calculated acoustic (first order) and optical (zeroth
order) deformation potentials along the perpendic-
ular and parallel directions to the c-axis in t-Se.
According to our knowledge, this work for the
first time uses comprehensive quantum mechanical
formulation to calculate energy depended phonon
scattering (acoustic, polar emission/absorption and
non-polar emission/absorption), hole-dipole disor-
der scattering (caused by valence alternate pair type
defects as scattering centers), and impact ionization
scattering rates in a-Se.[2], [3]

Fig. 4 shows the simulated ENF in 0.1-15 µm a-
Se thin-films. The non-Markovian nature of hot hole
branching dominates for thinner thin films where

the dead space distance (min distance traveled to
attain impact ionization) is a multiple of the de-
vice length. In ∼Fig. 5 (a) and (b) we simulated
the threshold distance and gain distributions. The
history dependent nature of branching of Hot holes
is explained using a Gaussian distribution of the
avalanche threshold distribution distance which in-
creases determinism in the stochastic impact ioniza-
tion process. An almost ideal non-Markovian hole
ENF of ∼ 1 was observed in the case of 100 nm
a-Se thin-films and avalanche gains of 1000. An
inherent limitation to spatial resolution is the laterial
blur caused due to the hole drifting process in a-
Se, and, we calculate and predict the spatial blur
and the full width at half max (FWHM) spread of
the avalanching charge cloud in 0.5-200 µm a-Se
films ∼Fig. 6. Future detector designs can utilize the
non-local/non-Markovian nature of hole avalanche
in a-Se, to enable a true solid-state photomultiplier
with noiseless gain and enhanced signal to noise
ratios.
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Fig. 1. Excess noise factor in a-Se compared with Markov,
non-Markov and Capasso type devices.

Fig. 2. (a) DFT calculated electronic bandstructure for t-Se
showing a direct bandgap of 1.9 eV at the H point and (b)
phonon dispersion. Inset shows the brilloiun zone for t-Se.

Fig. 3. (a) Acoustic (first order) deformation potentials
represented by the slope of solid lines and (b) optical (zeroth
order) deformation potential measured via DFT calculations of
hole-phonon coupling using a 225-atom supercell of t-Se along
directions perpendicular and parallel to the c-axis.

Fig. 4. Plot of ENF from single hole MC simulations for
0.1-15 µm a-Se bulk drift length as a function of mean gain.

Fig. 5. (a) Threshold distance distributions and (b) avalanche
gain distribution for 500 nm a-Se bulk drift lengths for electric
field strengths of 140, 162 and 196 V/µm, respectively.

Fig. 6. (a) Increase in the spatial spread of a charge cloud of
500 holes injected at x = 0. The lateral spread as a function of
electric field at the end of 500 nm of travel in a-Se is simulated
for 174 V/µm. (b) The FWHM simulated for a-Se drift lengths
of 500 nm, 2µm, 4µm and 8 µm.
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