Monte Carlo Simulations of Electrons in $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ Ternary Carbide

K. Kalna ${ }^{1}$ and D. Chaussende ${ }^{2}$
${ }^{1}$ NanoDeCo Group, Dept. Electronic \& Electrical Engineering, Faculty of Science \& Engineering, Swansea University, Swansea, SA1 8EN, Wales, United Kingdom
${ }^{2}$ Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
Email: k.kalna@swansea.ac.uk

An $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ ternary carbide has become a promising wide band-gap semiconductor for the semiconductor industry over the last decade because of its emerging properties [1]. A crystal structure of $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ is illustrated in Fig. 1. The $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ band-gap has been calculated to be $2.48 \mathrm{eV}[2,3]$ thus opening a possibility for the design of carbide heterostructure devices in a combination with $4 \mathrm{H}-\mathrm{SiC}$ or $3 \mathrm{C}-\mathrm{SiC}$. These heterostructure carbide devices could potentially resolve issues with the large interface density of states at the semiconductor interface with a dielectric layer leading to a low inversion carrier mobility in SiC MOSFETs [4]. Other remarkable properties include superior oxidation resistance [5], superior wear resistance, low weight, high strength, and high thermal conductivity [6].

In this work, an ensemble Monte Carlo (MC) simulation code is developed to investigate the electron transport in bulk $\mathrm{Al}_{4} \mathrm{SiC}_{4} . \mathrm{Al}_{4} \mathrm{SiC}_{4}$ has a wurzite lattice $[2,3]$ as shown in Fig. 2. We assume that the two lowest valleys will play a role in electron transport. The M-valley has also six locations contributing one-half (a total of 3 equivalent valleys). The K-valley has six locations contributing one-third to the 1 st Brillouin zone (a total of 2) as shown in Figs. 3 ad 4. Therefore, a two-valley nonparabolic anisotropic bandstructure model is employed with the M-valley to be a minimum and the second K-valley to be 0.52 eV above as illustrated in Fig. 5. The electron interactions with polar and non-polar phonons within and between M and K-valleys are listed in Table 1. The material parameters in Table 2 use a mix of experimental and theoretical sources like optical phonon energies extracted from IR/Raman spectroscopy [3].

Valley	Transition	Scattering Type
M_{1}	$M_{1} \rightarrow M_{1}$	Intra Polar
	$M_{1} \rightarrow M_{2,3}$	Inter Non-Polar
	$M_{1} \rightarrow K$	Inter Non-Polar
M_{2}	$M_{2} \rightarrow M_{2}$	Intra Polar
	$M_{2} \rightarrow M_{1,3}$	Inter Non-Polar
	$M_{2} \rightarrow K$	Inter Non-Polar
M_{3}	$M_{3} \rightarrow M_{3}$	Intra Polar
	$M_{3} \rightarrow M_{1,2}$	Inter Non-Polar
	$M_{3} \rightarrow K$	Inter Non-Polar
K	$K \rightarrow M_{1}$	Inter Non-Polar
	$K \rightarrow M_{2}$	Inter Non-Polar
	$K \rightarrow M_{3}$	Inter Non-Polar

Table 1: Electron-phonon scattering transitions considered in the MC model.

Finally, M-valley k-vector (inverse) transformations to a spherical space (denoted by ${ }^{*}$) within the anisotropic analyt-

Table 2: $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ material parameters considered in the MC simulations.

Parameter [Unit]	Value
Mass Density [g/cm ${ }^{3}$]	3.03^{a}
Lattice Const. [Å]	3.28^{a}
Piezoelectric Const. [C/m²]	0.47^{a}
Longitudinal Acoustic Velo. [m/s]	10577^{a}
Transverse Acoustic Velo. [m/s]	6431^{a}
Polar Opt. Phon. Energy [meV]	$67.32^{\mathrm{b}}, 107.24^{\mathrm{b}}$
Non-Polar Opt. Phon. Energy [meV]	85.55^{b}
Acoustic Def. Potential [eV]	11.4^{c}
Indirect Band Gap for the M-valley	$\mathrm{E}_{G}^{(M)}=2.78$
(M) \& the K-valley (K) [eV]	$\mathrm{E}_{G}^{(K)}=3.30^{\mathrm{a}}$
Electron Effective Masses $\left[m_{e}\right]$	$\mathrm{m}_{l}^{*(M)}=0.568^{\mathrm{d}}$
	$\mathrm{m}_{t}^{*(M)}=0.695^{\mathrm{d}}$
	$\mathrm{m}_{l}^{*(K)}=1.057^{\mathrm{d}}$
	$\mathrm{m}_{t}^{*(K)}=0.936^{\mathrm{d}}$

${ }^{\text {a }}$ Ref. [2]. ${ }^{\mathrm{b}}$ Ref. [3]. ${ }^{\mathrm{c}}$ Average taken from [7]. ${ }^{\mathrm{d}}$ Extracted value from DFT calculations [2]. m_{e} is the rest mass of an electron.
ical model use a combination of Herring-Vogt and rotational transformations [8] as:

$$
\begin{gather*}
k_{x}^{*}\left(k_{x}\right)=k_{x}\left(k_{x}^{*}\right) \cos (\theta)-(+) k_{y}\left(k_{x}^{*}\right) \sin (\theta) \tag{1}\\
k_{y}^{*}\left(k_{y}\right)=k_{y}\left(k_{y}^{*}\right) \cos (\theta)+(-) k_{x}\left(k_{y}^{*}\right) \sin (\theta) \tag{2}\\
k_{z}^{*}\left(k_{z}\right)=k_{z}\left(k_{z}^{*}\right) \tag{3}
\end{gather*}
$$

The MC simulations in Figs. 6 and 7 predict that $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ will have a maximum electron drift velocity of $1.35 \times 10^{7} \mathrm{cms}^{-1}$ at an electric field of $1400 \mathrm{kVcm}^{-1}$ and a maximum electron mobility of $82.9 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$. Fig. 8 shows the electron mobility dependence on ionized impurity concentration. The average electron kinetic energy and valley occupation are plotted in Figs. 9 and 10, respectively.

References

[1] T. Liao, J. Y. Wang, and Y. C. Zhou, Phy. Rev. B 74 (17), 1098-1121 (2006).
[2] L. Pedesseau et al., APL Materials 3 (12), 121101 (2015).
[3] D. Zevgitis et al., Synthesis and Characterization of $\mathrm{Al}_{4} \mathrm{SiC}_{4}:$ A "New" Wide Band Gap Semiconductor Material, Materials Science Forum 821823, 974-977 (2015).
[4] S. Forster, D. Chaussende, and K. Kalna, ACS Appl. Energy Mater. 2 (9), 3001-3007 (2020).
[5] K. Inoue and A. Yamaguchi, J. Am. Ceram. Soc. 86 (6), 1028-1030 (2003).
[6] W. Y. Ching, and P. Rulis, Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals, OUP Oxford, 2012.
[7] H. Iwata and K. M. Itoh, J. Appl. Phys. 89 (11), 6228-6234 (2001).
[8] S. Forster, D. Chaussende, and K. Kalna, ACS Appl. Energy Mater. 2 (1), 715-720 (2019).

Fig. 1: A crystal structure of Fig. 2: A schematic of hexagonal bandstruc- Fig. 3: The hexagonal (0001) Fig. 4: Detail of locations of the M $\mathrm{Al}_{4} \mathrm{SiC}_{4}$. The blue, yellow, and ture of $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ in the \mathbf{k}-space showing a lo- $\mathbf{k}_{\mathbf{x}}-\mathbf{k}_{\mathbf{y}}$ plane of $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ showing a black spheres represent Al, Si, and cation of principal valleys. C atoms, respectively.
$\mathbf{k}_{\mathbf{x}}-\mathbf{k}_{\mathbf{y}}$ plane of $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ sho
location of principal valleys.
valleys in the (0001) plane within the $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ hexagonal structure, where $\theta= \pm 60^{\circ}$ or $\pi / 3$.

Fig. 5: A schematic of conduction band minimum val- Fig. 6: Electron drift velocity as a function of applied leys for $\mathrm{Al}_{4} \mathrm{SiC}_{4}$ showing details of the number of electric field in a bulk $\mathrm{Al}_{4} \mathrm{SiC}_{4}$. The velocity obtained equivalent M - and K - valleys, the separation between valleys, and the electron-non-polar phonon interactions considered in the transport model.
 assuming an anisotropic (red squares) and a simpler isotropic (blue circles) bandstructure are shown.

Fig. 9: Average kinetic energy as a function of applied electric field in a bulk $\mathrm{Al}_{4} \mathrm{SiC}_{4}$.

Fig. 7: Electron mobility as a function of applied elecric field in a bulk $\mathrm{Al}_{4} \mathrm{SiC}_{4}$. The mobility obtained assuming an anisotropic (red squares) and a simpler isotropic (blue circles) bandstructure are plotted.

Fig. 8: Electron mobility as a function of ionized impurity concentration in a bulk $\mathrm{Al}_{4} \mathrm{SiC}_{4}$.

Fig. 10: Valley occupancy of electrons in the M - and K-valleys vs. applied electric field in bulk $\mathrm{Al}_{4} \mathrm{SiC}_{4}$.

