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Introduction. In electron device modelings, the
interaction of electrons and electromagnetic fields
is usually tackled by classical or perturbative tech-
niques. In this work, on the contrary, we model
electron devices where both degrees of freedom for
electrons and electromagnetic fields are described
by a unique quantum state solution of a full Hamil-
tonian. In the resonant strong light-matter coupling
regime, our model is able to capture polaritonic
signatures in the time-dependent electrical current.

Model. The minimal-coupling Hamiltonian in
the Coulomb gauge, for N electrons interacting
with an electromagnetic field, is considered [1].
For our qualitative goal, approximations are needed,
and among them we consider a single-mode q for
the electromagnetic field, in dipole approximation,
and a 1D effective single-electron ballistic picture
for the transport in the x-direction, in which only
the conduction band plays a role, with different
electrons meaning different injection times and en-
ergies, as handled by the Ramo-Shockley-Pellegrini
theorem. Under all these assumptions, the quantized
version of the mentioned Hamiltonian reads, for the
electron degree x and the single mode degree q [2],

Hxq = − h̄2
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where α =
p
e2h̄ωN/(ϵ0L3

c) is the coupling con-
stant, with frequency ω and cavity volume L3

c . A
general solution of the Schroedinger equation with
such Hamiltonian Hxq in terms of is
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,

which is a set of coupled equations for the electron
dynamics, each referring to a given photon number.

Results. Effects of a quantized electromagnetic
field in the displacement current of a resonant tun-
neling diode inside a cavity (Fig. 1(a)) are analyzed.
The original peaks of the bare electron transmission
coefficient split into two new peaks due to the res-
onant electron-photon interaction (Fig. 2), leading
to coherent Rabi oscillations among the polaritonic
states that are developed in the system (Fig. 1(d)).
This shows how a simultaneous quantum treatment
of electrons (Fig. 1(c)) and electromagnetic fields
(Fig. 1(b)) may open interesting paths for engineer-
ing new THz electron devices. The computational
burden involved in the multi-time measurements of
THz currents is tackled from a Bohmian description
[3] of the light-matter interaction (Fig. 3).

Conclusion. We do believe that our modeling
framework may open original unexplored paths for
engineering new electron devices and new applica-
tions in the THz gap, by taking advantage of the
interplay between quantum electrons and quantized
electromagnetic fields.
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Fig. 1. (a) 3D spatial representation of the transport through
a RTD whose active region is inside a cavity, and whose
transport direction size is much smaller than the lateral sizes,
Ly, Lz ≫ Lx. (b) zero-photon |0⟩ and single-photon |1⟩ states
for the quantized single mode cavity field with energies h̄ω/2
and 3h̄ω/2. (c) 1D-view of the RTD device showing ground |0⟩
and first excited |1⟩ electron states with energies E0 and E1; the
light-matter interaction is effective only inside the active region,
while a much larger simulation box is used to deal with open
boundary conditions, with xleft, xright indicating the positions
where wavepackets are initialized. (d) |electron,photon⟩ states
inside the RTD/cavity in the resonant strong coupling regime:
state |0, 0⟩ almost unaffected; polaritonic states formed out of
(|0, 1⟩±|1, 0⟩)/

√
2 split by 2Er = 2h̄ωr in comparison to the

degenerate decoupled energies (dashed line); state |1, 1⟩ would
create another polariton subspace, in a larger basis set, with
state |0, 2⟩; ωr = αLx/h̄ is the Rabi frequency.
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Fig. 2. Transmission coefficients T (E) for: (black) no
light-matter interaction T0(E); (green) resonant semiclassical
interaction TS(E); (red) resonant quantum interaction TQ(E).
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Fig. 3. (a) Example of two Bohmian trajectories in the 2D
xq plane guided by the analytical evolution from the quantum
scenario. (b) Schematic representation of different regions on
the xq configuration space in the quantum well, with white
(grey) regions corresponding to the wavefunction occupying the
zero (one) photon and excited (ground) electron energy state.
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