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ABSTRACT 

Many quantum transport simulation tools 
require the electric and magnetic vector potentials, 
rather than the electric and magnetic fields. We 
present a finite-difference time-domain (FDTD) 
technique for calculating the time-dependent 
potentials. The equations are first order in space and 
time, and separate into solenoidal and irrotational 
parts. The first-order nature of the equations allows 
us to adapt well-developed techniques for 
traditional FDTD with fields, such as effective 
absorbing boundary conditions that allow us to 
simulate systems in free space within a finite 
computational domain. We demonstrate coupling 
of this electrodynamics technique to a ballistic non-
equilibrium Green’s function transport code. 

INTRODUCTION 

The coupling of classical electrodynamics to 
quantum-mechanical charge transport is an 
essential process to understand for the 
characterization of time-dependent and high 
frequency optoelectronic systems. Traditionally, 
classical electrodynamics is formulated in terms of 
the electric and magnetic fields, while the key 
quantity in quantum charge transport, the electronic 
Hamiltonian, requires the gauge-dependent electric 
and magnetic potentials. In this work, we present a 
time-dependent algorithm for calculating the 
electric and magnetic potentials in the Coulomb 
gauge, with a focus on coupling to quantum 
transport codes. 

DUAL-POTENTIAL FDTD 

The finite-difference time-domain (FDTD) 
algorithm is a popular choice for solving Maxwell’s 
curl equations. The algorithm marches each 
component of the electric and magnetic fields 
forward in time from initial values according to 
Maxwell’s equations. Many problems can be 
accurately modeled with initial values of all fields 

equal to zero, and only a current density driving the 
time evolution, allowing one to calculate all fields 
using only the two curl equations. We have 
produced a similar set of two curl equations for the 
familiar magnetic vector potential, 

∇ × 𝑨 = 𝜇0𝜖0
𝜕𝑪

𝜕𝑡
+ 𝜇0𝑭  (1) 

And the analogous quantity relating to the electric 
field, the electric vector potential, 

∇ × 𝑪 = −
𝜕𝑨

𝜕𝑡
   (2) 

In (1) and (2) 𝑨 is the magnetic vector potential, 𝑪 
is the electric vector potential, and 𝑭 is a quantity 
analogous to current density for the potentials. In 
this formulation, 𝑭 is related only to the solenoidal 
part of the actual current density. An example of a 
current density that makes explicit the inclusion of 
both a solenoidal and conservative part is shown in 
Fig. 1. Finally, we relate the conservative part of 
current density to the scalar potential, as 

∇ ∙ 𝜇0𝑱 =
𝜕

𝜕𝑡
∇2𝜙 (3) 

which is equivalent to the normal continuity 
equation. To reduce (3) to first order in the spatial 
derivative, we can track 𝜌, which is proportional to 
∇2𝜙 , and solve Poisson’s equation when 𝜙  is 
needed. The form of (1) and (2) is just that of 
Maxwell’s curl equations for fields, so the 
advancements in the FDTD technique for fields, 
such as the Yee cell [1] and perfectly matched layer 
boundary condition [2] are easily adapted. We 
showcase coupling to a ballistic NEGF code (Fig. 
2) by initializing a non-zero 𝜙 and sourcing 𝑨,𝑪, 
with a tunneling current between two metallic 
patches in Fig. 3. 
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Fig. 1.  Current density obtained from an electronic 

wavefunction for a vortex beam, with an explicitly defined 

angular and linear momentum. Color indicates intensity, and 

blue arrows indicate the solenoidal nature of the beam. The 

linear momentum is directed into the page. 

 

 
 

Fig. 2.  Demonstration of charge transport through a narrow 

channel between two contacts (left: full, right: empty) with 

random disorder using ballistic NEGF.  

 
 

 

 

 

 

 

 

 
Fig. 3.  Snapshot of electric and magnetic potentials sourced by two metallic patches with different initial electric potentials, and a 

resulting tunneling current through the small gap between the patches. Maxwell solvers on their own cannot capture phenomena 

such as the tunneling current and must be coupled with quantum transport solvers, as done in this work. 
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