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INTRODUCTION

We investigate theoretical methods for
the analysis of acoustic phonon modes
in arbitrary heterostructure superlattice and
their effect on modulating transport in
terahertz-frequency quantum-cascade lasers
(THz QCLs). We solve the acoustic phonon
wave equation via Fourier method to ob-
tain excellent agreement with experimental
results (Fig. 1-3). Our model is applica-
ble to arbitrary heterostructure profile. The
acoustic stop-bands in a THz QCL were
measured via an ultrafast pump–probe spec-
troscopy technique, using a pair of mode-
locked Ti:Sapphire Tsunami femtosecond
lasers, tuned to a wavelength of 810 nm.
We use the envelope of the obtained acoustic
deformation potential as a perturbation to
bandstructure potential (Fig. 4) to analyse
electron transport in common THz QCLs
active-region design schemes via density
matrix approach [1]. We find that acoustic
modes up to ∼200 GHz are capable of sig-
nificantly perturbing QCL transport (Fig. 5-
6), highlighting their potential for ultra-fast
modulation of laser emission. This agrees
well with our demonstration by using exter-
nally generated acoustic pulses [2].

ACOUSTIC PHONON MODE MODELLING

We consider the acoustic wave equa-
tion [3]: ∂

∂zv
2
s(z)

∂
∂zψ(z, t) − ∂2

∂t2ψ(z, t) = 0
where ψ(z, t) is the acoustic wave pressure
and vs(z) is the acoustic velocity. This equa-
tion can be solved using a Fourier method,
by assuming ψ(z, t) = ψ0ψn(z)exp(−iωnt),
where ψ0 is the wave amplitude, ωn the
angular frequency and pn(z) the envelope of
the acoustic wave:

− ∂
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∂
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pn(z) = ω2

npn(z) (1)

which can be discretised via finite-difference
method. The obtained envelopes of the res-
onant phonon modes pn(z) are directly pro-
portional to the local acoustic strain, and this
can be added as a static deformation potential
VSn

(z) to the Hamiltonian for an electron in
the QCL:

VSn
(z) = M · pn(z) (2)

where M is a modulation strength constant.
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Fig. 1: Schematic illustrations of ASOPS ex-
perimental configurations, showing (a) reflection
mode, and (b) transmission mode geometries.
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Fig. 2: Experimental probe reflectivity spectrum
(top), obtained using a reflection-mode ASOPS
geometry, and folded dispersion of the first Bril-
louin zone (bottom), obtained by solving Eq. (1)
for a single period of the Hybrid THz QCL [2].
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Fig. 3: Experimental probe reflectivity spectrum
(top), using thetransmission-mode ASOPS geom-
etry, and acoustic dispersion resulting from model
in Equation (1) (bottom). Solid blue lines repre-
sent the phonon dispersion, folded into the first
Brillouin zone. The red dashed line corresponds to
q = 2kL, and the red solid line shows this folded
into the first phonon Brillouin zone.
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Fig. 4: Conduction band potential of a hybrid
QCL design [2] with the addition of the 30th

acoustic mode with modulation M = 5 meV.
Two periods are shown at the resonance bias
K = 3.63 kV

cm along with the corresponding
wavefunction moduli squared.
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Fig. 5: Top inset: acoustic strain perturbation for
mode index n = 1, 2, 30. Bottom insets: Fre-
quency dependence (at NDR point) and dynamic
range dependence, respectively, on modulation
strength M for n = 1, 2, 30 . Graph on the
right: Full line traces illustrate material gain peaks
from figure in a) as modulation M is varied for
n = 1, 2, 30, while dashed lines illustrate current
density peaks (NDR points) of the Hybrid THz
QCL [2].
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Fig. 6: Dependence of performance parameters
for Hybrid THz QCL [2], as a function of acoustic
mode index, using varying modulation strengths
M = 1, 2, 3 meV. Results are shown for (a) emis-
sion frequency (at NDR point), (b) dynamic range,
(c) peak gain, and (d) current density at the NDR
point.
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