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Abstract 

We discuss a numerical method for computing the electronic scattering states for a fully 
two-dimensional open boundary scattering domain. The scattering states may then be 
used to obtain the local electron density in the vicinity of the scatterers which is necessary 
for a numerical study of the residual resistivity dipole and the "electron wind" force 
relevant to electromigration. The scattering states may also be used to calculate the local 
electron density of states which has recently been directly imaged by STM experiments on 
the surface of copper. Our numerical method is based upon the partial wave expansion of 
the known asymptotic form of the wave-function on the solution domain boundary. The 
wave-function and the normal derivative are then matched on the boundary resulting in 
a linear system of equations. 

I. Introduction 

The large volume of recent literature on the study of electromigration increasingly em­
phasizes the importance of the local non-uniform fields near scattering centers. It is clear 
that a detailed understanding of the local fields near scatterers is needed to understand 
phenomena in which the residual resistivity dipole (RRD) [1-2] and Friedel-oscillations 
[3] play an important role. Such a local field treatment is used in the application of the 
Kubo linear-response formalism to compute the "electron wind" force experienced by a 
scatterer in electromigration [4-7]. 

The importance of local field effects near scattering centers is most clearly and elegantly 
demonstrated by the recently published scanning tunnelling microscope (STM) experi­
ments performed on the C u ( l l l ) surface by Crommie et al. [8-9]. In these experiments, 
the local density of states (LDOS) of the two-dimensional electron gas (2DEG) on the 
stepped surface of C u ( l l l ) was directly probed by and STM tip at low temperature. The 
images of the LDOS revealed standing-wave patterns due to electron scattering from step 
edges and defects. 

In this paper, a numerical method is presented in which the two-dimensional electronic 
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scattering states are obtained by solving the effective mass Schrodinger equation over a 
2D domain with an open boundary. The method uses the parital wave expansion of the 
known asymptotic solution and matches the wave-function and its normal derivative on 
the boundary. The resulting system of linear equations can be solved by the finite element 
method. These scattering states may then be used to compute the electron density and 
the LDOS inside the scattering domain. A self-consistent treatment would require an 
iterative solution of scattering states using a Hartree potential [10]. 

The physical model for the partial wave expansion is presented in section II. Section III 
presents the finite element formulation of the problem. An example solution for a repulsive 
scatterer is presented in section IV. In conclusion, we summarize our method in Section 
V. 

II. Model 

We view electron transport in the spirit of Landauer's picture for the residual resistivity 
dipole (RRD) [1-2] in which the incident carrier flux is identified as the fundamental 
driving transport quantity in a "jellium" model with a background scattering time r 
which gives rise to the bulk resistivity p0 = m"/ne2T, where n is the electron density 
and m* is the electron effective mass. As is schematically depicted in Fig. 1, the incident 
electron flux is elastically scattered by the defect, schematically shown as the shaded spot, 
and is partially transmitted and partially reflected. For the metallic "jellium" model, the 
problem domain is assumed to be in the ballistic regime and scattering is assumed to 
take place within the region close to the scatterer such that 'Ixkpl ^> 1, where kf is the 
wave vector for the electrons at the Fermi-energy, and / is the mean-free path given by 
/ = hkpT/m*. Outside the scattering region the domain is assumed to uniformly extend 
to infinity. 

F I G U R E 1: A schematic diagram of the 2-D scattering domain with an elastic scatterer 
at the center. The solution domain is represented by the hatched region. 

Within this "jellium" model, the self-consistent electronic states can be explicitly obtained 
by solving the single electron effective mass Schrodinger equation, 

" T V • ( -TV^ r ' ' ) ) + lV« + V» + Vsc]Mr, 0) = EMr, *), (4) 
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where Vft(r) is the potential of the scatterer, VM is the self-consistent Hartree potential 
which accounts for many-body Coulombic interactions, and Vsc is the electrostatic po­
tential associated with self-consistent screening. Exchange and correlation may also be 
included within a local density approximation [11]. The z dependence has been dropped 
by the assumption that only the first subband of the 2DEG is occupied, reducing the 
problem to circular-polar corrdinates. 

We assume an incident plane wave of the form exp(i'k • r) . The asymptotic solution of 
this equation in the region where the scattering potential is negligible (the region outside 
the domain) is given by 

oo 

^(r>RoJ) = Y, im[aJm(kr) + hmH^(kr)]e'm\ (2) 
m=—oo 

where we have used the Jacobi-Anger expansion of the incident wave, and Jm is the 
Bessel function of the first kind with a known incident amplitude a, and H^ is the 
Hankel function for the outgoing scattered wave with the unknown amplitudes bm. 

Similar to the development of the quantum transmitting boundary method for quasi-lD 
transport [12], the 2-D transport boundary condition is developed from the orthogonality 
of the angular modes over the interval 0 = (0, 2TT), which are used to expand the unknown 
coefficients, 6m, on the boundary of the domain, 

Jm 
L / * e-.«tyr = ^ e)dO - a J^kHo) . (3) 

Using this expansion for the 6m coefficients, the normal derivative of the wave-function 
on the boundary can be obtained, 

im.0 

+ * JLSiK&f •-,«'-*»)* w 

and 

d0 
= £ l-^(re-%m9Hr = RoJ)de)e'me, (5) 

m——oo 

where the primes on the Bessel and Hankel functions indicate derivatives with respect to 
kr. Equations (4) and (5) form the basis for the open 2-D scattering boundary conditions 
which can be incorporated into the finite element method. It is important to note that 
the orthogonality of the angular functions requires a circular domain boundary. 

III. Numerical M e t h o d 

The finite element method is used to solve the 2-D effective mass Schrodinger equation 
on the discretized domain schematically shown by the grided region in Fig. 1. The region 
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outside the problem domain is assumed to extend to infinity as described in section II. 
The finite element method is used to linearize the Schrodinger equation, resulting in the 
weak variational form 

] BT-^Bdn J u + u T (J [V{r) - E}NT • Ndn) u = 

T ^ ~ T r L ^ ^ ' (6) 
2 Jan m' or ^n v ' 

where u is the vector of nodal values for the arbitrary test function $; u is the vector 
of unknown nodal values for the wave function 0, N is the vector of global orthonormal 
finite element shape functions, B is the matrix of spatial derivatives of the N vector of 
shape functions, and n^n is the unit normal to the domain boundary, dCl. The result 
for the derivative of the wave-function on the domain boundary developed in section II 
is inserted above to determine the right hand side surface terms. The resulting linear 
system of equations has the form 

u T (T + V + C)u = u T P , (7) 

where 

* 2 r _ T 

-BdQ 

T T NdQ, 

2 Jn m" 

V = J [V(r) - £]N' 

2 m m=-oo V H^'(kRo) J-Jo 

The infinite sums may be truncated to include only the more relevant low angular mo­
mentum modes with minimal loss in accuracy. The resulting linear system may be solved 
by standard LU-decomposition and back substitution using sparse matrix methods for 
the efficient use of both memory and cpu resources. 

IV. A Repulsive Scatterer 

Our preliminary results, neglecting electron-electron scattering effects contained in VH 
and Vsci a r e presented for the structure schematically shown in Fig. 1. The infinite re­
pulsive scatterer is centered in the solution domain. The mesh generated for this example 
contains 10801 nodes connected by 21500 triangular elements. Both skyline storage and 
bandwidth optimization techniques were employed for an efficient computational solu­
tion of the resulting unsymmetric linear system of equations. The real part of the wave 
function is presented in Fig. 2. The radial and angular modes are clearly visible in the 
scattered wave. 
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F I G U R E 2: The real part 
of the scattered wave func­
tion for an incident plane 
wave scatterd by a repulsive 
central field. Both the in­
cident plane wave and the 
radially scattered contribu­
tions are clearly visible. The 
mesh consists of 10801 nodes 
with 21500 triangular ele­
ments. 

V. Summary 

We have presented a numerical method to solve the 2-D effective mass Schrodinger equa­
tion for an open boundary scattering problem. The method uses partial wave expansion 
to fully specify the normal derivative of the wave-function on the boundary. The finite 
element method is used to discretize the Schrodinger equation. The partial wave bound­
ary conditions are used to fully specify the problem which reduces to a linear system of 
equations which can be solved for the scattering states. The scattering states may then be 
used to compute the local density of states and the election density inside the scattering 
region. 
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