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Abstract 

We study the simulation of quantum cellular automata and how such a simulation is simplified 

by the features of FORTRAN-90. We demonstrate the use of second-quantized operators to 

write the cell Hamiltonian and explain the Hartree self-consistent method for simulating a 

many-cell system. Finally, several examples of simulated QCA devices are shown. 

I. Introduction 

The particular quantum system we simulate consists of several of the quantum cells shown in 

Fig. (la). We determine the ground state of the system by solving the time-independent 

Schrodinger equation. Each cell consists of five coupled quantum dots which contain a total of 

two electrons. The cells only interact with each other Coulombically; no tunneling is allowed 

between cells. Since the state of each cell is affected by its nearest neighbors, we call such a 

system a quantum cellular automaton (QCA). 

Because of Coulombic repulsion between the two electrons in each cell, the charge density 

exhibits strongly bistable behavior. The ground state of the cell is therefore in one of the two 

states shown in Fig. (lb). Because of this bistable nature, we can use the state of each cell to 

encode binary information. We define a cell polarization which measures to what extent the 

cell is in one of the two stable states shown in Fig. (lb): 

(P1 + P 3 ) - ( P 2
 + P4) 

~ P 0
+ P l + P 2

 + P3 + P4 0 ) 

Figure 1. Schematic of the basic five-site cell, (a) The geometry of the cell with t=0.3meV, t'=t/10, 
and a=20 nm. (b) Coulombic repulsion causes the electrons to occupy antipodal sites within the 
cell. The two bistable states have cell polarizations of P=+l and P=-l(See equation (1)). 
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II. Second-Quantized Hamiltonian 

We define a second-quantized annihilation operator, 3- 0 , which destroys an electron on site i 

with spin G, and a creation operator, cv , i 0 , which creates a particle on site i with spin o. The 

product of these two operators, n^ 0 = ait 0fl> ,-, 0 , is the number operator for that site and spin. 

Using these operators we can compactly write the Hubbard-type tight-binding Hamiltonian of 

a single isolated cell: 

H"U = Z £ 0 ^ , O + £ *,-;(«,- /fly, a +fly, 0 t f l | . a ) + 
i, a i > j , a 

LEQni. ni, + I VQTt~T\ 

This Hamiltonian includes on-site energies, tunneling between sites, on-site charging costs, and 

Coulombic repulsion between each pair of sites. The interaction with neighboring cells alters 

the on-site energies in the first term. 

III. Unique Features of Fortran-90 

Fortran-90 supports a level of data abstraction sufficient to allow direct implementation of 

these second-quantized operators and the related state vectors. We have created user-defined 

types representing creation and annihilation operators and many-electron site kets and bras. We 

also provide functions to convert between these types and to define the effect of each operator 

on all other data types. 

The second useful feature of Fortran-90 for our purpose is operator overloading. This allows us 

to use an operator without regard to the data types it acts upon. We then provide an interface 

that invokes the appropriate function based on the data types involved. In this case, the action 

of a creation or annihilation operator on a Dirac ket in the site representation is specified. The 

operation is "overloaded" onto the normal multiplication symbol. A similar overloading 

specifies that multiplication of a Dirac bra and ket be interpreted as the inner product of the 

state vector. 

Fig. (2) shows a segment of Fortran-90 code that demonstrates how easily quantum mechanical 

expressions can be written as Fortran code once these definitions are in place. The code is 

easily understandable because the level of data abstraction matches the level of quantum 

mechanical abstraction. 
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Figure 2. Conversion from second-quantized quantum mechanical expression to FORTRAN-90 
code using data abstraction techniques. 

IV. Hartree Self-Consistent Calculations 

Since electrons are not allowed to tunnel between cells, we can solve for the ground state of 

each cell separately. Such intracellular calculation includes exchange and correlation effects 

exactly. The interaction between cells is included using a Hartree self-consistent technique. 

Once the iterative solution of the system has converged, the system is in an eigenstate. Use of 

several different initial conditions and comparison of the eigen-energies allows us to determine 

the overall ground state of the system. 

V. Application: Quantum Cellular Automata 

We have used this scheme to simulate many arrangements of quantum cells. The most 

fundamental of these calculations is shown in Fig. (3a). The system consists of two cells as 

shown in the inset. The charge density of cell 2 is fixed, and the induced polarization in cell 1 

is then calculated. This is repeated for many values of P2 in the range [-1,+ !] and the induced 

polarization Pj can then be calculated as a function of P2. This cell-cell response function 

demonstrates the highly nonlinear and bistable nature of the cell's response to its neighbors. 

Fig. (3b) shows a similar cell-cell response function calculated at several non-zero 

temperatures. This requires calculating the thermal expectation value of the polarization over 

the canonical ensemble. As seen in the figure, the nonlinearity of the response degrades as the 

temperature increases. 
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Figure 3. Cell-cell response functions, (a) The cell-cell response function for the basic five-site cell 
at zero temperature. The solid line corresponds to the antisymmetric case, and the dotted line to the 
symmetric case, (b) The temperature dependence of the cell-cell response function. 

Fig. (4) shows three of the basic QCA devices. Fig. (4a) demonstrates that even a weakly 

polarized cell can drive a line of similar cells and that the bistable saturation of the cell-cell 

response will return the signal to maximum polarization in subsequent cells. Fig. (4b) 

demonstrates that a signal will propagate through a right-angle turn without degradation, and 

Fig. (4c) shows that a single line of cells can fan out to multiple lines and maintain signal 

integrity. 
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Figure 4. Three basic QCA devices, (a) A line of cells can be used to transmit information 
from one point to another, (b) The signal is transmitted correctly around a corner, (c) A single 
line can fan out correctly to multiple lines with the same signal. These are not schematic 
diagrams; they are plots of the actual results of the self-consistent calculation of the ground 
state of each system. The diameter of each dot is proportional to the charge density on the site. 
The cells with heavy borders are fixed; all others are free to react to the fixed charge. 

Fig. (5) shows that the state of a free cell matches the majority of its fixed neighbors. This 

majority voting logic can provide the basis of a new computing architecture. If one of the fixed 

neighbors is called the "program line", such an arrangement of cells can be interpreted to be a 

programmable AND/OR gate. The program line determines the nature of the gate (AND vs. 

OR), and the other inputs are applied to the gate thus defined. 
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Figure 5. The programmable AND/OR gate. Here, the program line is set to one, so the other two 
inputs are being applied to an OR gate. In each of the four cases, the output is one if either of the 
two inputs are one. This is a plot of the result of a self-consistent ground state calculation. 

Finally, Fig. (6) shows how to cross two lines of cells without having the signals interfere. 

Wire crossings are very important for implementation of devices like adders and exclusive-OR 

gates. Such a quasi-two-dimensional crossing is impossible with conventional devices. 
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Figure 6. One way to cross two QCA wires without signal interference. The box shows the extent 
of the crossing, so a system designer can simply place such an arrangement of cells wherever two 
wires need to be crossed. This is the result of a self-consistent ground state calculation for this 
system. 
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